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Abstract

Recent theoretical work on robustness to adver-
sarial examples has derived lower bounds on how
robust any model can be. However, these bounds
do not account for specific models used in prac-
tice. In this paper, we develop a methodology to
analyze the fundamental limits on the robustness
of fixed feature extractors, which in turn provides
bounds on the robustness of classifiers trained on
top of them. The tightness of these bounds relies
on the effectiveness of the method used to find
collisions between pairs of perturbed examples at
deeper layers. For linear feature extractors, we
provide closed-form expressions for collision find-
ing while for piece-wise linear feature extractors,
we propose a bespoke algorithm based on the iter-
ative solution of a convex program that provably
finds collisions. We utilize our bounds to identify
structural features of classifiers that lead to a lack
of robustness and provide insights into the effec-
tiveness of different training methods at obtaining
robust feature extractors.

1. Introduction
Determining lower bounds on the robustness of classifiers to
adversarial examples has emerged as an important problem
to understand both how effective specific classifiers are
(Bunel et al., 2017; Tjeng et al., 2019; Gowal et al., 2018)
and what non-trivial regimes for learning any classifier in
the presence of adversarial examples are (Pydi & Jog, 2020;
Bhagoji et al., 2019; 2021). Lower bounds have allowed
a move away from the attack-defense arms race (Madry
et al., 2018; Zhang et al., 2019; Croce & Hein, 2020) to
an understanding of how robust classifiers can be, in more
general settings.
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In this paper, we turn our focus to determining lower bounds
on the robustness of feature extractors. An understanding
of how robust a given feature extractor is important for
two reasons. First, it sheds light on the impact of common
architectural choices, such as activation functions and di-
mensionality reduction, on robustness. Second, it allows
for an informed choice between different feature extractors
in learning paradigms such as transfer and semi-supervised
learning. Our work also bridges the aforementioned ap-
proaches which focused at one end on certifying the robust-
ness of specific classifiers and at the other on information-
theoretic bounds applicable only to the set of all classifiers.
We determine lower bounds on fixed feature extractors by
answering the following key question:

What is the minimum robust loss incurred by any classifier
trained on top of a fixed feature extractor?

Collision-finding for lower bound determination: To de-
termine classifier-agnostic lower bounds on robustness, ear-
lier work focused on the interaction between points from
different classes in the input space when perturbed through
the construction of a conflict graph. Minimizing an appro-
priately defined loss function over this graph determines an
information-theoretic lower bound on the loss. Intuitively,
the denser the graph is, the higher the lower bound. Finding
these collisions for features extracted from a non-convex
feature extractor, like a neural network, is the non-trivial
technical task we address in this paper.

Our contributions in this paper are:

Lower bounds on robustness for fixed feature extractors
(Section 2): We extend prior work by providing a method to
derive lower bounds on all classifiers that use a fixed feature
extractor. We construct a distance function over the input
space that depends on the feature extractor in use. This
method applies to all discrete data distributions, adversary
neighborhood contraints and fixed feature extractors.

Novel algorithm for collision finding (Section 3): To con-
struct the conflict graph needed to determine lower bounds,
we propose new algorithms for efficiently finding collisions
between adversarially-modified features. We find these to
be critical due to the ineffectiveness of existing algorithms
such as Projected Gradient Descent at finding collisions.
For linear feature extractors such as the first layer of a
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neural network, we determine exact, closed form expres-
sions to find collisions. For non-linear feature extractors,
specifically piece-wise linear ones (such as ReLU layers),
we develop a descent algorithm that solves a sequence of
convex optimization problems over polytopes.

Empirical findings (Section 4): We utilize our method to
find numerical lower bounds on the robustness of fixed
feature extractors trained on the MNIST and Fashion
MNIST datasets. Our results show that both dimensionality-
reducing linear layers as well as the information loss induced
by ReLU activations can lead to significantly less robust
networks. We also found that, at certain layers, TRADES
(Zhang et al., 2019) led to somewhat less robust feature
extractors than standard adversarial training (Madry et al.,
2018). We discuss the implications of our bounds for the
design of better robust models in Section 5.

2. Lower bounds for fixed feature extractors
In this section, we develop a method for evaluating the
robustness of a feature extractor for classification in the
presence of a test-time adversary. We characterize the opti-
mal adversarial loss achievable by any classifier that uses the
fixed feature extractor as its initial layer. Our method applies
for any discrete data distribution, non-empty neighborhood
constraint, and a fixed, measurable feature extractor.

2.1. Background

Examples and labels: We consider a supervised classi-
fication problem with a test-time adversary. We have an
example space X and a label space Y = {−1, 1}. Labeled
examples are sampled from a joint probability distribution
P over X × Y .

Test-time adversary: The test-time adversary modifies a
natural example subject to some constraints to generate
an adversarial example that will be classified (Goodfellow
et al., 2015; Szegedy et al., 2013; Carlini & Wagner, 2017).
Formally, the adversary samples a labeled example (x, y)

from P and selects x̃ ∈ N(x), where N : X → 2X̃ is
the neighborhood function encoding the constraints on the
adversary and X̃ is the space of adversarial examples.1 For
all x, N(x) must be nonempty. This definition encompasses
the `p family of constraints widely used in previous work.

Measuring adversarial loss: We consider ‘soft’ classifica-
tion functions (or classifiers) that map examples to probabil-
ity distributions over the classes. These are h : X → ∆Y ,
where ∆Y = {p ∈ RY : p ≥ 0,

∑
y∈Y py = 1}. We

measure classification performance with a loss function

1In most but not all previously studied settings, X̃ = X . Mak-
ing the distinction helps to clarify some of our definitions and
affects what properties they can be expected to have.

` : ∆Y × Y → R, so the expected performance of a classi-
fier h is E[supx̃∈N(x) `(h(x̃), y)], where (x, y) ∼ P . In the
two class setting, h(x̃)−1 = 1 − h(x̃)1, so any loss func-
tion that treats the classes symmetrically can be expressed
as `(p, y) = `′(py). Additionally, `′ should be decreas-
ing. Together, these allow the optimization over adversar-
ial examples to be moved inside the loss function, giving
E
[
`
(
inf x̃∈N(x) h(x̃)y, y

)]
. Thus, the adversarial optimiza-

tion can be analyzed by itself.

2.2. Extending to fixed feature extractors

Definition 1. For a soft classifier h, the correct-
classification probability qv that it achieves on an exam-
ple v = (x, y) in the presence of an adversary is qv =
inf x̃∈N(x) h(x̃)y. The space of achievable correct clas-
sification probabilities is PV,N,H ⊆ [0, 1]V , defined as
PV,N,H =

⋃
h∈H

∏
(x,y)∈V

[
0, inf x̃∈N(x) h(x̃)y

]
.

(Bhagoji et al., 2021) characterized PV,N,H in the case that
H is the class of measurable functions X → ∆Y . For a data
distribution P that is discrete with finite support V ⊆ X×Y ,
this allows the minimum adversarial loss achievable to be
expressed as an optimization over PV,N,H:

inf
h∈H

E(x,y)∼P

[
sup

x̃∈N(x)

`(h(x̃), y)
]

= inf
q∈PV,N,H

∑
v∈V

P ({v})`′(qv).

We extend their approach to analyze feature extractors as
follows. Given a feature space Z and a fixed, measurable
feature extractor f : X̃ → Z , define Hf = {h ∈ H : h =
g ◦f}: an element ofHf is some measureable g : Z → ∆Y

composed with f . Our aim is to characterize PV,N,Hf so
that we can optimize loss functions over it to evaluate the
suitability of f .

Conflict graph: In (Bhagoji et al., 2021), the notion of a
conflict graph was used to record neighborhood intersec-
tions for pairs of points from different classes. When such
an intersection exists, it is impossible for any classifier to
correctly classify both of those points in the adversarial
setting. We extend this notion to apply to the family of
classifiers using a fixed feature extractor f . In our setting, a
conflict exists between a pair of points when each of them
has a neighbor that is mapped to the same point in the feature
space.

We call the conflict graph GV,N,f , where V ⊆ X × Y .
When we apply GV,N,f in order to understand classification
of labeled examples with distribution P , we take V to be
the support of P . The graph is bipartite: the vertex set is
partitioned into parts Vc = V ∩ (X × {c}). The edge set is
EV,N,f ⊆ V1×V−1 and it contain the edge ((u, 1), (v,−1))
when there is some ũ ∈ N(u) and some ṽ ∈ N(v) such
that f(ũ) = f(ṽ).

Lemma 1 (Feasible output probabilities). The set of cor-
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rect classification probability vectors for support points V ,
adversarial constraint N , and hypothesis classHf is

PV,N,Hf = {q ∈ RV : q ≥ 0, q ≤ 1, Bq ≤ 1} (1)

whereB ∈ RE×V is the edge incidence matrix of the conflict
graph GV,N,f .

The proof is given in Appendix A.

Approximating GV,N,f and PV,N,Hf : If instead of know-
ing the true conflict graph GV,N,f , we have some subgraph,
then we can find a polytope that is a superset of the true
PV,N,Hf . If we minimize some expected loss over this
proxy polytope, we obtain a lower bound on the optimal
loss over Hf . Because subgraphs of the conflict graph lead
to valid lower bounds on optimal classification performance,
we can use this method to evaluate the quality of a feature
extractor f even if exact computation of the conflict graph
is computationally intractable.

2.3. Distance interpretation

In the most commonly studied settings, the neighborhood
constraint arises from a distance function: Nε(x) = {x̃ ∈
X̃ : d(x, x̃) ≤ ε}. This parameter ε is the adversarial budget
constraint. For any two examples u and v, a natural quantity
to consider is ε∗(u, v) = inf{ε ≥ 0 : Nε(u)∩Nε(v) 6= ∅},
the smallest adversarial budget that would cause the edge
(u, v) be appear in the conflict graph. We will call this
the distance on X induced by d. The following equivalent
expression is useful for computing the distance: ε∗(u, v) =
inf x̃∈X̃ max(d(u, x̃), d(v, x̃)). When X = X̃ = Rd and
d(x, x′) = ‖x − x′‖p, the minimal adversarial budget is
simply 1

2‖u− v‖p. This definition generalizes easily to the
setting of classification with a particular feature extractor,
but the resulting quantity is much more interesting.

Definition 2. The distance induced on X by d and f is the
minimum adversarial budget required to create a conflict
between u and v after a feature extractor f :

ε∗f (u, v) = inf{ε ≥ 0 : f(Nε(u)) ∩ f(Nε(v)) 6= ∅},
= inf

ũ,ṽ∈X̃ :f(ũ)=f(ṽ)
max(d(u, ũ), d(v, ṽ)). (2)

This reduces to ε∗(u, v) when f is the identity function,
or more generally any injective function. Any choice of ũ
and ṽ in (2) provides an upper bound on ε∗f (u, v), which is
useful for finding a subgraph of GV,N,f and a lower bound
on optimal classification performance inHf .

Induced distance is not a distance on the feature space:
The fact ε∗f is defined on X is essential: it is not possible to
interpret it as a distance on Z . For a full explanation of this
point, see Appendix B.

3. Distance computations for practical feature
extractors

In this section, we provide algorithms to find collisions
between the features resulting from adversarially perturbed
data. Lower bounds for specific datasets and architectures
are in Section 4. For brevity, the single-layer version of the
algorithms are presented in this Section, with the general
algorithm described in Appendix C.

We now describe the concrete setting that we will work
in for the remainder of the paper. We assume that our
example space is a real vector space and that adversarial
examples are from the same space: X = X̃ = Rn1 . Let
B ⊆ X be a nonempty, closed, convex, origin-symmetric
set. These conditions imply the zero vector in contained in
B. We take the neighborhood of any point to be a scaled,
shifted version of this ball: Nε(x) : x+ εB. Neighborhood
constraints derived from `p (p ≥ 1) norms fit into this
class: by defining B = {δ ∈ Rn1 : ‖δ‖p ≤ 1}, we obtain
Nε(x) = {x̃ ∈ Rn1 : ‖x̃− x‖p ≤ ε}. We will focus on `2-
based neighborhoods, but our algorithms can work for any
choice of B over which efficient optimization is possible.

3.1. Linear feature extractors

Suppose that our feature extractor is an affine linear function
of the input example: f(x) = Lx+ k for some matrix L ∈
Rn2×n1 and vector k ∈ Rn2 . Then the distance εf (u, v)
becomes

inf{ε ≥ 0 : (k + L(u+ εB)) ∩ (k + L(v + εB)) 6= ∅}.

Because {(ε, δ) ∈ R1+n1 : δ ∈ εB} is closed convex
cone, εf (u, v) can be expressed as the following convex
optimization problem (CONELP):

inf ε subject to δ ∈ εB, δ′ ∈ εB, L(δ− δ′) = L(v− u).

Because B is closed and the linear subspace is always
nonempty, the infimum is achieved. Also, it is sufficient
to consider (δ, δ′) satisfying δ′ = −δ: for any feasible
(ε, δ, δ′), the point (ε, (δ − δ′)/2, (δ′ − δ)/2) is also fea-
sible, has the same value, and satisfies the additional con-
straint. The feasibility of the symmetrized point uses the
origin-symmetry of B. The simplified program is

min ε subject to δ ∈ εB, Lδ = L(v − u)/2.

Thus the optimal adversarial strategy for creating conflict
between u and v is intuitive: produce examples with the
same features as the midpoint (u+ v)/2.

Explicit expressions with `2 constaints: If B is the unit `2
ball, there are further simplifications. Consider the singular
value decomposition L = UΣV T where we do not include
zero singular values in Σ. Then the linear map given by UΣ
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is injective and can be canceled from the linear constraint
on δ. The resulting program is

min ε subject to ‖δ‖2 ≤ ε, V T δ =
1

2
V T (v − u),

the optimal choice of δ is δ = 1
2V V

T (v − u), and
εf (u, v) = 1

2‖V
T (v − u)‖2. Observe that this is the norm

of a vector in Rn2 , i.e. the feature space, contrasting with
our discussion in Section B. However, this is essentially the
only case εf (u, v) simplifies into a feature space distance.

3.2. Fully connected networks with ReLU activations

For this architecture, we have f = f (`) ◦ . . . ◦ f (1) where
the layer i function is f (i) : Rni → Rni+1 , f (i)(z) =
(k(i) + L(i)z)+. Here z+ represents the component-wise
positive part of the vector z. Then εf (u, v) is the value of
the following optimization problem:

min ε subject to δ ∈ εB, δ′ ∈ εB, f(u+ δ) = f(v+ δ′).

As in the linear case, the minimum exists because the cones
are closed and the equality constraint is feasible. In contrast
with the linear case, the equality constraint is nonconvex.

Linear pieces of f : The local linear approximation to
f (i)(z) around a point z′ is diag(s(i,z

′))(k(i) + L(i)z),
where s(i,z

′) is a zero-one vector that depends on the sign
pattern of k(i) + L(i)z′: s(i,z

′)
j = 1((k(i) + L(i)z′)j > 0).

In other words, s(i,z
′) is the ReLU activation pattern at layer

i when z′ is the input to that layer.

Using these linear approximations, the feasible set of
(δ, δ′) ∈ Rn1+n1 satisfying the constraint f(u + δ) =
f(v + δ′) can be decomposed as a union of polytopes: each
activation pattern defines a linear subspace and there are
some linear inequalities specifying the region where that
activation pattern actually occurs. For a one-layer network,
the linear piece for pattern s is

f(z) = diag(s)(k + Lz) for diag(2s− 1)(k + Lz) ≥ 0.

Thus one of the polytopes composing the feasible set is
(δ, δ′) ∈ Rn1+n1 satisfying

diag(s)(k + L(u+ δ)) = diag(s′)(k + L(v + δ′)),

(2 diag(s)− I)(k + L(u+ δ)) ≥ 0,

(2 diag(s′)− I)(k + L(v + δ′)) ≥ 0.

In the one-layer case, the whole feasible region is covered by
polytopes where s = s′. Observe that the dimension of the
subspace satisfying the linear equality varies with s. When
f contains multiple layers, each polytope in the feasible set
is defined by a linear equality constraint involving feature
vectors together with a linear inequality for the sign of each
ReLU input.

Algorithm 1 The single layer versions of the descent al-
gorithm with midpoint initialization and the linear cone
program. We have u, v, δ, δ′ ∈ Rn1 , k,w, s, z, z′ ∈ Rn2 ,
L ∈ Rn2×n1 , and ε ∈ R.

1: FINDCOLLISION(u, v, L, k)
2: w ← k + 1

2L(u+ v), ε← 1
2‖u− v‖

3: for 0 ≤ j < n2 do sj ← 1(wj > 0)
4: repeat
5: εold ← ε
6: (ε, δ, δ′, z, z′)← CONELP(L, u, v)
7: sold ← s
8: for 0 ≤ j < n2 do
9: if zj > 0 and z′j > 0 then

10: sj ← 1− sj
11: until sold = s or εold = ε
12: return ε, δ, δ′

Descent algorithm: We optimize over this feasible set with
a descent algorithm: Algorithm 1 details the version for
single-layer networks. The method generalizes to multiple
layers and is used to obtain our results in Section 4.2. A
full description of the general version is in Appendix C.
We initialize our search in a polytope that we know to be
nonempty: the one containing the feature space collision
induced by the midpoint of the two examples. Within a poly-
tope, we minimize the objective exactly by solving a linear
cone program. We examine the dual variables associated
with the linear inequality constraints to determine whether
an adjacent polytope exists in which we can continue the
search.

We need not just the values of the primal solution, but the
values of dual variables associated with the linear inequali-
ties in the solution to the dual problem. These are called z
and z′ in Algorithm 1. When both zj > 0 and z′j > 0, the
input to ReLU j is zero when both f(u+ δ) and f(v + δ′)
are computed, and the objective function could be decreased
further by allowing the input to switch signs. In this case,
we move to another polytope based on the new ReLU states
and search there.

When we fail to find such pairs of dual variables, either
the minimum is in the interior of the current polytope (and
thus is supported only by cone constraints), or the minimum
is on the boundary of the current polytope but there is no
adjacent polytope in which we could continue the search.
Thus we end the search.

Algorithm termination, convergence, and complexity:
The descent algorithm will terminate in a finite number
of iterations and will find a local minimum of the distance
function. Since the feasible space is non-convex, any lo-
cal descent procedure is not guaranteed to find the global
minimum. The number of variables in the cone program
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Data set (V1,V−1) and feature extractor f .

Find collisions for each pair (u, v)
using Algorithm 1

Upper bounds on ε∗(u, v) for each (u, v)

Compare distances to ε to find
conflict graph edge set

GV,Nε,f for each budget ε

Compute minimum log-loss using
(Bhagoji et al., 2021) Algorithm 1

Lower bound on minimum log-loss on V
using feature extractor f for each budget ε.

Figure 1. Pipeline for experimental evaluations.

is proportional to the number of ReLUs in the feature ex-
tractor plus the dimension of the example space. The time-
complexity of a single iteration of the search is polynomial
in the input dimension and number of ReLUs. The feasi-
ble region is the union of a finite but exponentially large
number of convex polytopes. Due to the requirement that
each iteration make progress, it is impossible to ever revisit
a polytope. Thus, termination is guaranteed, but no poly-
nomial bound on the number of iterations is available. We
suspect that as in the case of the simplex algorithm for lin-
ear programming, input data resulting in an extremely large
number of iterations may exist, but would have a delicate
structure that is unlikely to arise in practice. Other common
layers are discussed in

4. Evaluation
In this section, we put into practice the methodology out-
lined in the previous sections for determining the robustness
of a fixed feature extractor (see Figure 1).

4.1. From collision-finding to lower bounds

Vertices V from training data: The vertex set V is a rep-
resentation of the training data. We use 2-class problems
derived from MNIST (LeCun & Cortes, 1998) or Fashion
MNIST (Xiao et al., 2017) as in previous work (Pydi & Jog,
2020; Bhagoji et al., 2019; 2021).

Neighborhood function N : We use the common `2-norm
constraint (Madry et al., 2018), in which the adversary’s
strength is parametrized by the radius ε of the ball.

Fixed feature extractors f : We use the composition of
the layers of convolutional and fully-connected DNNs as
our fixed feature extractors (details in Appendix F). The
linear part of the first layer behaves as a linear feature ex-

tractor. Subsequent layers behave as non-linear feature ex-
tractors. These networks are trained using either CE loss
minimization or robust training with either adversarial train-
ing (Madry et al., 2018) or TRADES (Zhang et al., 2019).

Edge set E from collision finding: Algorithm 1 2 provides
a greedy, iterative method to find collisions between fea-
ture representations of pairs of points from different classes.
Each successful collision is an edge in the bipartite conflict
graph. Each iteration of this algorithm can be cast as a
convex program in the form of a linear cone (as detailed
in Appendix D). We solve this linear cone program using
CVXOPT (Andersen et al., 2013). Since we are working
with an `2-norm constrained adversary, we can speed up
computation by projecting the inputs onto the space spanned
by the right singular vectors of the first linear layer. For lin-
ear convolutional layers, we cast the convolution operation
as a matrix multiplication to enable the use of the closed
form derived in Section 3.1.

Computing the lower bound from the conflict graph:
The conflict graph determines the set of possible output
probabilities for each vertex (training data point) for the
optimal classifier. Minimizing the 0− 1 and cross-entropy
losses over this graph thus results in a lower bound over
these losses since any classifier must incur a larger loss than
the optimal classifier, by definition. We use the method
from (Bhagoji et al., 2021) over the conflict graphs we de-
rive from deeper layer representations. Results in the main
body are for the cross-entropy loss (others in Appendix H).

4.2. Results

Interpreting the results: In all of our plots, we show the
lower bound on all measurable classifiers for a given dataset
and adversarial budget obtained from (Bhagoji et al., 2021)
(labeled Input space). Our bounds for fixed feature ex-
tractors should be compared to this lower bound, which
represents the best possible performance for any classifier.
The magnitude of the difference provides a qualitative mea-
sure of that subset of features’ contribution to the overall
network’s lack of robustness.

How does robustness evolve across layers? For both be-
nign and robust models (Fig. 2), fixing the first linear layer
immediately leads to a jump in the lower bound on robust-
ness. This indicates that the representations after the first
linear layer as not as ‘well-separated’ as in the input space.
We find that the first ReLU activation layer contributes sig-
nificantly to an increase in the lower bound for both benign
and robustly trained networks. We observe that post-ReLU
representations tend to be sparse, leading to an easier search

2We experimented with a modification of the Auto-PGD (Croce
& Hein, 2020) algorithm to find collisions at deeper layers with
fixed budgets. This was far less effective at finding collisions, so
all results use Alg. 1.
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(b) Adversarial training (ε = 2.0)

Figure 2. Robustness of representations obtained from different layers of 3-layer FCNNs on MNIST
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Figure 3. Robustness of the representations obtained from a 3-layer FCNN on MNIST using different training procedures

problem and a larger number of collisions. The second lin-
ear layer, on the other hand, does not lead to much additional
increase in the loss. This is a property of the particular ar-
chitecture we use, and a smaller linear layer is likely to lead
to larger increases in loss. Finally, the second set of ReLU
activations does have a measurable impact on robustness,
particularly for the benign network. Appendix H.2 shows
that decreasing the width of feature extractors leads to a
drop in robustness.

How does the parametrization of robust training impact
layer-wise robustness? Linear layers of models with be-
nign training are the least robust, with robustness increasing
with the budget εtrain used during training. This trend holds
for deeper layers in the model as well, with features ex-
tracted from robustly trained networks being more robust
than their benign counterparts for corresponding values of
ε. We find a significant difference between PGD-based ad-
versarial training and TRADES in terms of the robustness
of their first linear layers (Fig. 3), but this largely disap-
pears by the second ReLU activation layer. Interestingly,
the marginal benefits of using a larger budget reduce as εtrain
increases. Further, we observe a phenomenon where layers
of a network robustly trained using higher values of εtrain
can be less robust than those using a lower value.

5. Discussion
Implications for training robust models: Our results in-
dicate that layers in the network that reduce the effective
dimension of their incoming inputs have the largest negative

impact on robustness (see further results in Appendix H.2).
Two prominent examples of this are ReLU layers that re-
duce effective dimension by only considering non-negative
outputs and fully connected layers with fewer outputs than
inputs. On the other hand, linear convolutional layers do not
have a negative impact on robustness. This indicates that
not reducing the effective dimension of any deeper feature
to be lower than that of the input data is likely to benefit
robustness. Further, our results confirm that the use of larger
values of εtrain does not necessarily translate to higher ro-
bustness at lower budgets. This indicates the need to be
robust to more than a single adversary at a time. Finally,
we find a qualitative difference in the layers learned using
PGD-training and TRADES, implying interesting learning
dynamics with different robust losses.

Extending to state-of-the-art models and datasets: All
of our experiments in this paper are on simple models and
datasets which demonstrate the feasibility and use of our
method. However, state-of-the art feature extractors for
datasets such as Imagenet are far deeper than those con-
sidered in this paper. Thus, our algorithm would need to
be made considerably faster to handle these cases. While
our framework, can handle skip connections, networks with
attention are beyond its scope. Nevertheless, the feature
extractors we consider are robust for the tasks we evaluate
them on, making our results and conclusions representative.
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(a) Some fibers of f

u

v

ũ

ṽ

(b) ε∗f (u, v) with f−1(z̃)

Figure 4. Induced distances for f : R2 → R2, f(x0, x1) = (max(x0, 0),max(x1, 0)), (a pair of ReLUs). Let a, b > 0. Then
the fiber f−1({(a, b)}) is the point {(a, b)}. The fiber f−1({(a, 0)}) is the ray {(a, y) : y ≤ 0}. The fiber f−1({(0, 0)}) is the
quadrant {(x, y) : x ≤ 0, y ≤ 0}. For u = (1, 4) and v = (9,−5), we have ε∗f (u, v) = 5, ũ = (4, 0), ṽ = (4,−5), and
z̃ = f(ũ) = f(ṽ) = (4, 0).

A. Proofs
Proof of Lemma 1. Suppose that e = ((u, 1), (v,−1)) ∈ E . Then, there are some z̃ ∈ Z , ũ ∈ N(u), and ṽ ∈ N(v)
such that f(ũ) = f(ṽ) = z̃. We have qu ≤ h(f(ũ))1 = h(z̃)1, qv ≤ h(f(ṽ))−1 = h(z̃)−1, and h(z̃)1 + h(z̃)−1 = 1.
Combining these gives the constraint (Bq)e ≤ 1, which appears in (1).

Now, we will show that each vector q in the polytope is achievable by some h. The construction is simple: at each point in
the feature space, assign the largest possible probability to class 1: let h(z̃)1 = supw:z̃∈f(N(w)) qw and h(z̃)−1 = 1−h(z̃)1.
This achieves the desired performance for examples from class 1:

inf
ũ∈N(u)

h(f(ũ))1 = inf
ũ∈N(u)

sup
w:f(ũ)∈f(N(w))

qw ≥ inf
ũ∈N(u)

qu = qu.

For an example is v in class −1 we have

inf
ṽ∈N(v)

h(f(ṽ))−1 = inf
ṽ∈N(v)

(
1− sup

w:f(ṽ)∈f(N(w))

qw

)
= inf

ṽ∈N(v)
inf

w:f(ṽ)∈f(N(w))
(1− qw)

= inf
w:((w,1),(v,−1))∈E

(1− qw)

≥ qv.

The final inequality uses the fact that q satisfies Bq ≤ 1.

B. Induced distance is not a distance on Z
Figure 4 illustrates the computation of ε∗f for a simple f that is related to the ReLU function.

The fact ε∗f is defined on X is essential. It is not possible to interpret the induced distance as a distance in the feature space
Z . This is because f(Nε(x)), the set of features of points near x, cannot be derived from f(N0(x)), the set of features of
the uncorrupted version of x. This is because distinct choices of x may lead to the same features f(N0(x)), but f may vary
more in the neighborhood of one choice of x that the other.

An example is helpful to illustrate this point. Let X = X̃ = R2, let Z = R, let Nε(x) be the closed `2 ball of radius ε
around x, and let f(x0, x1) = arctan(x1/x0) for x 6= 0 (the value that we pick for f(0, x1) is irrelevant). In other words, f
finds the angle between the horizontal axis and the line containing x. The range of values that the adversary can cause f(x̃)
to take depends on ‖x‖. If ‖x‖2 < ε, f(x̃) can be any angle from 0 to π, and if ‖x‖2 ≥ ε, |f(x̃)− f(x)| ≤ arcsin(ε/‖x‖2).

This example also illustrates that εf is not necessarily a metric, even in cases where d is a metric. Given u, v ∈ R2, we
have εf (u, αu) = 0, εf (u, αu) = 0, and εf (αu, αv) can be made arbitrarily small by selecting α to be small. Despite this,
ε(u, v) will be on the order of min(‖u‖, ‖v‖).
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An alternative approach to studying the induced distance is to define an adversarial classification problem on Z by taking
NZε (z) = f(Nε(f

−1({z}))). Note that this construction only makes sense when X = X̃ and thus the domain of f is X .
This is more conservative: for any feature point z it considers the worst-case x with feature z: the x in whose neighborhood
f varies the most.

C. Descent algorithm for multiple layer networks
We start by repeating the notion used in Section 3.2: f = f (`) ◦ . . . ◦ f (1) where the layer i function is f (i) : Rni → Rni+1 ,
f (i)(z) = (k(i) + L(i)z)+. Then εf (u, v) is the value of the following optimization problem:

min ε subject to δ ∈ εB, δ′ ∈ εB, (f (`) ◦ . . . ◦ f (1))(u+ δ) = (f (`) ◦ . . . ◦ f (1))(v + δ′).

Using the local linear approximation, the equality constraint becomes

diag(s(`))(k(`) + L(`)(. . . diag(s(1))(k(1) + L(1)(u+ δ))))

= diag(s′(`))(k(`) + L(`)(. . . diag(s′(1))(k(1) + L(1))(v + δ′)))).

and for each 1 ≤ i ≤ `, the inequalities

(2 diag(s(i))− I)(k(i) + L(i)(. . . diag(s(1))(k(1) + L(1)(u+ δ)))) ≥ 0

(2 diag(s′(i))− I)(k(i) + L(i)(. . . diag(s′(1))(k(1) + L(1)(v + δ′)))) ≥ 0

must hold in order for the linear approximation to be valid. Any collision must be in a polytope with s(`) = s′(`), which is
why we only needed one set of s variables in the single layer case. However, ReLU activation variables for earlier layers
cannot be merged.

The main modification to algorithm is to the process of changing the s variables after each iteration. The variables for all but
the final layer are allowed to change independently, while the variables in the final layer are changed together following the
same rule as in the single layer algorithm.
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Algorithm 2 Descent with midpoint initialization
Require: u, v ∈ Rn1 , L ∈ Rn2×n1 , k ∈ Rn2

Ensure: ε ∈ R, δ, δ′ ∈ Rn1

1: z ← k + 1
2L(u+ v), ε← 1

2‖u− v‖
2: for 0 ≤ j < n2 do
3: sj ← 1(zj > 0),
4: end for
5: repeat
6: εold ← ε
7: (ε, δ, δ′, z, z′)← ConeLP(L(1) . . . L(`), k(1) . . . k(`), u, v, s(1) . . . s(`), s′(1) . . . s′(`−1))
8: sold ← s
9: for 1 ≤ i ≤ `− 1 do

10: for 0 ≤ j < ni+1 do
11: if z(i)j > 0 then
12: s

(i)
j ← 1− s(i)j

13: end if
14: if z′(i)j > 0 then
15: s

′(i)
j ← 1− s′(i)j

16: end if
17: end for
18: end for
19: for 0 ≤ j < n`+1 do
20: if z(`)j > 0 and z′(`)j > 0 then
21: s

(`)
j ← 1− s(`)j

22: end if
23: end for
24: until sold = s or εold = ε

D. Converting collision finding to a linear cone program
In this section, we demonstrate how the collision finding problem after one linear and one ReLU layer can be cast as a linear
cone program.

We have a network with first layer v 7→ Lv + k where L ∈ Rn1×n0 and k ∈ Rn1 .

Given a pair of points (v′, v′′) ∈ R2n0 we would like to search over the space of (δ′, δ′′) ∈ R2n0 such that (L(v′+δ′)−k)+ =
(L(v′′ + δ′′)− k)+. This space is always nonempty because we can take v′ + δ′ = v′′ + δ′′ = (v′ + v′′)/2.

Let S ⊆ [n1] be the subset of active ReLUs. Let F ∈ R|S|×n1 be the inclusion indicator matrix for the subset: Fi,j = 1 if
and only if j ∈ S and |S ∩ [j]| = i (there are exactly i elements of S strictly smaller than j, so j is the i+ 1st element of S).
Let D be the diagonal matrix with Dj,j = 1 for j ∈ S and Dj,j = −1 for j 6∈ S.

For j ∈ S (the active ReLUs), we need the constraint (L(v′ + δ′) + k)j = (L(v′ + δ′) + k)j . In matrix form, this is
FL(v′ + δ′) = FL(v′′ + δ′′),

For j ∈ S, we need (L(v′ + δ′) + k)j ≥ 0, (L(v′′ + δ′′) + k)j ≥ 0, and for j 6∈ S, we need (L(v′ + δ′) + k)j ≤ 0,
(L(v′′ + δ′′) + k)j ≤ 0. In matrix form, these are D(L(v′ + δ′) + k) ≥ 0, D(L(v′′ + δ′′) + k) ≥ 0.

Our objective is max(‖δ′‖2, ‖δ′′‖2). We will replace with a linear objective by adding two additional variables (t′, t′′)
satisfying t′ ≥ ‖δ′‖2 and t′′ ≥ ‖δ′′‖2.
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The cvx-opt system is

minimize cTx
subject to Gx+ s = h

Ax = b

s � 0

The cones involved are a nonnegative orthant of dimension 2n1 and two second order cones, each of dimension n0 + 1.
Thus s = (D(L(v′ + δ′) + k), D(L(v′′ + δ′′) + k), t′, δ′, t′′, δ′′). We then let x = (t, δ′, δ′′). The matrix relating s and x
is G ∈ R(n1+n1+1+n0+1+n0)×(1+n0+n0) and s = h−Gx. The block structure is

G =


0 −DL 0
0 0 −DL
−1 0 0
0 −I 0
−1 0 0
0 0 −I

 h =


D(Lv′ + k)
D(Lv′′ + k)

0
0
0
0


We use Ax = b to encode FL(δ′ − δ′′) = −FL(v′ − v′′), so A ∈ R|S|×(1+n0+n0), b ∈ R|S|, and

A =
(
0 FL −FL

)
b = −FL(v′ − v′′).

Finally,

c =

1
0
0

 .

D.1. Factorized L

If n1 < n0, then we can take advantage of the fact that the rank of L is at most n1. Let L = UΣV T .

Replace L(v + δ) with UΣ(V T v + ε), n0 with size of Σ.

New G and A:

G =


0 −DUΣ 0
0 0 −DUΣ
−1 0 0
0 −I 0
−1 0 0
0 0 −I


A =

(
0 FUΣ −FUΣ

)
Also, the length of c is reduced. The constant vectors h and b are unchanged.

E. Further common layers
Batch-normalization: Batch norm layers are simply affine functions of their inputs at test-time, and the transformations
they induce can be easily included in a linear layer.

Max pooling: Max-pool layers, like ReLUs, are piecewise linear functions of their inputs, so constraints coming from the
equality of max-pool outputs also lead to feasible regions that are the union of polytopes. This is a simple extension left for
future work due to a lack of space.

Other activation functions and architectures: Injective activation functions such as Leaky ReLU, ELU and sigmoid will
not lead to additional collisions. Further, since they are not piecewise linear, a different descent algorithm would be needed.
Our framework cannot find collisions in networks with both forward and backward flows, such as attention.
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F. Further experimental details
We consider the following two architectures for our experiments:

1. 3-layer fully connected neural network (FCNN): 300 FC-ReLU-200 FC-ReLU-2 FC

2. 4-layer convolutional neural network (CNN): 20×5×5 conv.-BN-ReLU- 2×2 MaxPool-50×5×5 conv.-BN-ReLU-
2×2 MaxPool- 500 FC - 2 FC

We also construct a ‘Small’ and ‘Smaller’ version of the FCNN with layers that are 2× and 4× narrower respectively.

G. Related Work
Related work on robustness lower bounds: When the data distribution satisfies certain properties, (Dohmatob, 2019) and
(Mahloujifar et al., 2019) use the ‘blowup’ property to determine bounds on the robust loss, given some level of loss on
benign data. We note that these papers use a different loss function that depends on the original classification output on
benign data, thus their bounds are not comparable. (Bhagoji et al., 2019), (Pydi & Jog, 2020) and (Bhagoji et al., 2021)
provide lower bounds on robust loss when the set of classifiers under consideration is all measurable functions. These
bounds are classifier-agnostic and do not depend on the loss on benign data.

Related work on certification and verification: Work on certified robustness has considered techniques for training neural
networks such that the resulting models are provably robust to perturbations upper bounded by a given budget (Kolter &
Wong, 2018; Raghunathan et al., 2018; Cohen et al., 2019; Li et al., 2020). Typically, these models can only be certified
to be robust to small budgets. In contrast, our work provides lower bounds on the robustness of partial models which are
applicable across a large range of budgets. Approaches to verifying the robustness of neural networks (Bunel et al., 2017;
Tjeng et al., 2019; Gowal et al., 2018) are closely related to our work, but differ in that they consider fixed end-to-end
networks while we focus on a layer-by-layer analysis, allowing us to argue about the robustness of classifiers trained on top
of given feature extractors.

H. Additional Results
H.1. Impact of linear convolutional layers on robustness

As discussed in Section ??, the first convolutional layer can be thought as simply a matrix multiplication, although the size
of the resulting matrix can be large. We find that since the effective dimension of the resulting features is much larger than
the input dimension for the datasets we consider, the linear convolutional layer does not lead to an increase in the lower
bound (Fig. 12 in Appendix).

H.2. Impact of reduction of network size

In Figure 7, we compare the robustness of representations obtained from fully connected networks with decreasing layer
sizes. The ‘Regular’ network is the one used throughout, while the ‘Small’ and ‘Smaller’ networks have corresponding
layers that are 2× and 4× narrower respectively. We can clearly see that as the width of the feature extractor decreases, so
does its robustness.

H.3. 0− 1 Loss results

In Figures 8, 9, 10 and 11 we provide lower bounds on the 0− 1 loss in the same settings as those considered in the main
body of the paper. We note that the results and conclusions remain the same qualitatively.

H.4. Linear convolutional layers

In Figure 12, we can see that the representations extracted from the first linear layer of a convolutional network do not have
any negative impact on the robustness of the overall model.
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(b) Adversarial training (ε = 2.0)

Figure 5. Robustness of representations obtained from different layers of a 3-layer FCNN trained using benign training on Fashion MNIST
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Figure 6. Robustness of the representations obtained from a 3-layer FCNN using different training procedures on Fashion MNIST
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Figure 7. Robustness of the representations obtained from fully connected networks with layers of decreasing size.
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Figure 8. 0− 1 Loss: Robustness of the representation obtained from the first linear layer of a 3-layer FCNN using different training
procedures
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Figure 9. 0− 1 Loss: Robustness of representations obtained from different layers of a 3-layer FCNN trained using benign training
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Figure 10. 0− 1 Loss: Robustness of representations obtained from different layers of a 3-layer FCNN trained using PGD adversarial
training with ε = 2.0
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Figure 11. 0− 1 Loss: Robustness of the representation obtained from the second ReLU layer of a 3-layer FCNN using different training
procedures.
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Figure 12. Robustness of the representation obtained from the first linear layer of a 4-layer CNN using different training procedures.


