
Research Statement Arjun Bhagoji

Progress in machine learning (ML) is often measured under controlled, well-understood conditions. However,
safety-critical workflows in realistic settings require ML systems to be reliable even when faced with new and unex-
pected conditions. Sufficiently adverse conditions may violate the statistical assumptions underlying common ML
models, causing erroneous behavior. This raises two questions: on the theoretical front, how do we rigorously reason
about conditionsunderwhichunreliable behavior occurs andon thepractical side, use these insights tobuild reliableMLsystems?

In my work, I develop a sound foundational understanding of the necessary and sufficient conditions for the
reliability ofMLmodels. I leverage this understanding to build reliable yet performant practicalML systems across
diverse datamodalities. I revisit standard assumptions for learning by considering an adversary, which mathemati-
cally captures undesirable conditions such as poisoned training data, perturbed test data, out-of-distribution inputs,
and label noise, to name a few. I take a comprehensive approach that starts by using an analytical lens to modeling
vulnerabilities in ML systems in practice. The lack of reliability I find leads me to develop an understanding the con-
ditions under which ML models can be reliable, and what properties these reliable ML models possess, focused on
test-time robustness. Finally, I use these insights to develop techniques for embedding reliability in ML systems,
going beyond robustness to address naturally-arising reliability concerns.

My key contributions to this research agenda are organized around four thrusts:
1. Modeling realistic adversaries for practical ML models: My work was the first to show how powerful test-time
attacks can be implemented in practice, using numerical approximations of gradients [7] to attack a deployed ML
system. I introduced a new training-time attack called model poisoning [2] on federated learning via stealthy mod-
ifications of model parameters. I have demonstrated physically-realizable attacks at both training [26, 25] and test
time [24, 21], and that unreliable behavior can be induced even in out-of-distribution detectors [20, 8].
2. Findingdata-driven fundamental limits on the robustness ofMLmodels: I have shown that achievable bounds on
the loss incurredbyany classifier in thepresenceof a test-timeadversaryand foragivendistributioncanbe found [3, 4,
12]. I utilized the theory of optimal transport to provide information-theoretic limits on robustness [3]. For the special
case of empirical distributions, I introduced the concept of a conflict graph, enabling the use of graph algorithms to
efficiently find lower bounds on the cross-entropy loss [4] and in the multi-class setting [12].
3.Model-focused characterizationof reliable behavior: Using tools that analyze the internal representations of neu-
ral networks, I provided a cross-adversary analysis of how reliability manifests via different methods [10]. These in-
ternal representations are also amenable to conflict graph-based analysis, providing bounds on the robustness of
different feature extractors [6]. Sample complexity in the presence of an adversary is important to understand train-
ing dynamics and I showed it is controlled by a generalization of the VC-dimension known as the Adversarial VC-
dimension [11].
4. Building reliableML systems under different adverse conditions: I have found forcing adversaries tomake trade-
offs between incompatible goals is often the key to enhancing reliability. I have improved robustness in the face of
test-time attacks for computer vision [5, 27, 13], tampered training data in vision and language tasks [18, 23]. My
recent work has aimed at improving the reliability of ML systems deployed to solve problems of societal interest,
particularly in networking. I have tackled issues of label noise in network probes for censorship detection [9], data
drift in temporal cellular network data [16] and data scarcity for network traffic classification [14].
Research Impact: I strive to create impact on three fronts: academic, practical and interpersonal. My research has
over 7000 citations and has been recognized through the Siemens FutureMakers Fellowship, a finalist position for the
Bell Labs Prize, a $150k grant from C3.ai, a Spotlight paper at the NeurIPS conference, among others. The practical
impact of my work stems from my collaborations with industry researchers on two monographs on reliable feder-
ated learning [15, 1], as well as Verizon’s deployment of a solution for reliable resource forecasting in the presence of
drift [16]. I believe strongly that mentorship is the key to impactful research. I have mentored 10 graduate and 3 un-
dergraduate students as a researcher at the University of Chicago, guiding several to their first research publication.

ResearchThrust 1: Identifying Unreliability inML Systems
In my work, I have created powerful, theory-guided attacks that work in practical settings. I show how tools from
numerical and regularized optimization can be used to find vulnerabilities in MLmodels.
Query-based black-box attacks: ML models are susceptible to adversarial examples, which are test inputs that have
been strategically perturbed to induce incorrect inferences. Typically, these are generated by performing gradient
descent with respect to the input on a loss function defined such that minimizing the loss corresponds to changing
themodel’s prediction, while constraining the added perturbation to lie within a neighborhood of the original input.
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In practice however, Machine Learning as a Servive (MLaaS) providers only allow input-output access to theirmodels
through an API. I found that this level of access, termed black-box since there is no access to the model’s internals, is
sufficient to generate effective and stealthy adversarial examples against state-of-the-artmodels [7]. I estimated gradients using
the method of finite differences and reduced the number of queries drastically through dimensionality reduction.
Physically realizable attacks at training and test time:ML systems become evenmore unreliable when their training
phase is compromised with malicious data. Backdoor attacks modify input training data with artifacts (called trig-
gers) designed to make the model learn spurious correlations that are then exploited at test time. These attacks were
limited to digital modifications until my collaborators and I showed that physical objects in images could be used as
backdoor triggers [26, 25]. My research has also showed that adversarial examples can be effective evenwhen encoun-
tered in the physicalworld, and passed through a sensor such as a camera bymodifying the optimization processwith
an expectation over transformations that simulate possible artifacts [24], althoughdifferent portions of a physical ob-
ject have varying impact on the output [21]. I showed that even models designed to operate in an open-world setting
are vulnerable, with the out-of-distribution detectors used to detect irrelevant inputs being brittle [20, 8].
Vulnerabilities indistributed learning:The lack of reliability is evenmore pernicious in decentralizedmodes of train-
ing such as federated learning, which is widely deployed in practice. I was the first to showmodel poisoning [2] is pos-
sible in federated learning, with a small number of agents participating in the training process being compromised
and returning model updates that are modified to ensure that certain input data is misclassified. Regularized opti-
mization was used to embed themalicious updates within benign ones, making compromised agents hard to detect.
Impact Highlights: My paper on query-based black-box attacks was the first to demonstrate the impact of adversarial
examples on deployed, real-world systems with an attack on Clarifai’s content moderation model. Model poisoning
has emerged as a novel attack vector that has been extensively studied in follow-up work, with over 900 citations.

ResearchThrust 2: Data-focused Fundamental Limits on Robustness
My work has shown that is possible to derive model-agnostic fundamental limits on robustness in the presence of
an adversary. These bounds step away from an attack-defense arms race, and characterize how well the best model
performs in the presence of the strongest possible test-time adversary. In addition, these bounds are tight, i.e. there
exist classifiers that can achieve these bounds, providing a benchmark for practitioners to train reliable models.
Optimal robust lossviaoptimal transport:When the set of allowed classifiers over a real vector space is allmeasurable
functions, the best possible classifier will achieve the Bayes loss for general distributions, and zero loss for discrete
distributions, i.e. it can separate data perfectly. However, this is no longer be true when data can be adversarially
perturbed at test time. To reason about reliability in a model-agnostic fashion, we need to understand the geometry
of thedata distributionwhenperturbed. The theory of optimal transport allows for thedeterminationof distribution-
level costsusingpoint-wise costs betweenpoints. I showed that bydefininganappropriate adversarial point-wise cost
function, the transport and classification problems can be related using Kantorovich duality, and the optimal transport
cost provides a lower bound on the optimal loss over all possible models in the presence of perturbations [3]. This result holds for
arbitrary distributions defined on Polish spaces and upper-hemicontinuous, closed, and non-empty perturbation
neighborhoods. For cases of interest such as empirical and Gaussian distributions, the optimal transport cost can be
efficiently computed, unlike the optimal loss itself, making the identification of this duality extremely effective. For
Gaussian data, the paper also determines the sample complexity of the optimal classifier.
Lower bounds on robust loss for empirical distributions: For empirical distributions used in practice, I have de-
rived improvedmethods to lower bound robust loss using a conflict graph that captures collisions between perturbed
samples [4, 12]. Finding the optimal loss directly for the case of the cross-entropy loss [4] and multi-class classifica-
tion [12] is very computationally expensive. Using these bounds, I characterized the performance of trainingmethods
designed to improve reliability against adversarial examples, and demonstrated a large gap to optimality.
Impact Highlights: Efficiently computable and achievable fundamental limits on robustness allow researchers to de-
termine the gap to robustness for practical models. This line of work has been recognized with a finalist position for
the Bell Labs Prize, a $150k grant from C3.ai and a Spotlight paper at the NeurIPS conference.
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ResearchThrust 3: Model-focused Reliability Analysis
Thedevelopment of reliablemodels rests on understanding how specificmodel families behave under adverse condi-
tions. Inmywork, I show how a variety ofmodel properties such as convergence to optimality, discrimination power
and learned features in deeper layers change when test-time adversaries must be accounted for.
Explaining robust feature learning in deep neural networks: Classifiers that attain some level of robustness against
adversarial examples have been obtained using adversarial training proposed by Madry et. al [17] and its variants.
During training, each sample is perturbed using a specified attack before its loss is computed. However, it is unclear
how the features learned by these robust models differ from standard models and across attacks. I used Centered
Kernel Alignment (CKA), to compare learned representations, both robust and not, across different models [10]. I
found stronger attackers consumemore of the capacity of neural networks, leading to feature collapse across layers as well as dif-
ferential convergence speeds across layers. Surprisingly, the results also show different attackers can lead to similar
robust features, indicating the way forward formodels reliable against multiple attackers simultaneously. Each layer
of models robust to test-time attacks can be treated as a new data representation, which enables use of the conflict
graph idea for determining lower bounds on robustness to feature extractors [6]. This allows for the precise determi-
nation of how robust the best classifier trained on top of a given feature extractor can be. This is interesting for both transfer
learning using robustly trainedmodels as well as to determine architectural properties that detract from robustness.
Convergence to robust models: For a given model family, it is of interest to practitioners to determine how many
samples it takes for a hypothesis to converge to the best possible robust hypothesis from that class. In the standard
framework of statistical learning theory, the sample complexity is governed by the Vapnik-Chervonenkis (VC) dimen-
sion of the model family used. I derived an analogue of this quantity, termed the Adversarial VC-dimension [11], when
the data is adversarially modified. For linear models, this work showed that learning to be robust to perturbations
constrained by standard distance metrics in real-valued spaces does not take more samples than standard learning.
ImpactHighlights: Finding the convergence rate to robust linearmodels in the presence of adversariallymodified data
closed an open problem posed by Schmidt et. al [19].

ResearchThrust 4: Building ReliableML Systems
I use the insights from my analysis of the undesirable behavior of current ML systems to propose new training and
data pre-processing methods. I also address naturally-occurring unreliable behavior in deployedML systems.
Robustness against test-time attacks: I have developed robust trainingmechanisms that seek to build resilience into
the training phase using data transformations [5]. These are a generalization of standard regularizationmethods using
Principal Component Analysis (PCA). The data is transformed such that the learned model exhibits stronger depen-
dence on high-variance components, which contain more information. This was followed up by work focusing on
protecting against a different type of attacker who focuses their perturbation in a patch, as opposed to the entire in-
put. Using models with low receptive fields greatly reduced the impact of patch-based attacks [27]. In recent work,
my collaborators and I showedhowoptimized out-of-distribution data can be used to createmodel versions that have
minimal transferability of adversarial examples from onemodel to another, enabling longitudinal robustness [13].
Securing the training pipeline: Training-time attacks are harder to protect against as the amount of data that needs
to be compromised to induce undesirable behavior is often small. I have overcome this challenge in two separate
ways. Tomake federated learningmore reliable againstmodel poisoning,my collaborators and I built SparseFed [18],
an at-scale system that sparsifies agent updates, leading to a provable trade-off for malicious agents between detectability
and effectiveness. Post facto reliability against training-time attacks can be achieved by building a system for post-attack
forensics that can reliably trace back which data points led to the undesirable behavior getting embedded [23].
Reliability against natural data variation inML for networks: ML systems are often unreliable due to natural prop-
erties of the input data, particularly in domains such as networking where the underlying data generation process
shifts often. My collaborators and I proposed LEAF [16] to adaptively select new training data guided by the error
distribution over newly acquired data, drastically improving prediction performance on a real-world cellular network dataset.
For tasks such as censorship detection, existing heuristics are unreliable and can have tremendous label noise. The
reliability of DNS censorship detection using ML [9] can be greatly improved on large-scale, real-world datasets by
fusing labels from disparate sources, demonstrating the need for task-aware techniques.
Impact Highlights: LEAF is being deployed by Verizon to provide better forecasts for resource allocation in cellular
networks, particularly to deal with exogenous shocks.
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Future Research Goals
Equitable and reliable access for all stakeholders is integral to cultivating broad-based societal trust in a technology
as transformative as machine learning. In the future, my vision is to enable the creation of reliable ML systems that
everyone can trust. Mycurrent researchhas alreadybegunworking toward this visionby focusingonbuilding long-term
reliability into existing systems, while accounting for vulnerabilities in new ML paradigms. I will expand the ambit
ofmy research to address different stakeholders in the pipeline of building and deployingML systems, particularly in
critical areas like healthcare and cybersecurity. I believe it is critical to empowermodel owners, data brokers and end
users to influence and navigate ML systems. I will pursue three key lines of research towards achieving my vision:
1. Identifying fundamental vulnerabilities for newML paradigms: As generative ML models take centre-stage, di-
agnosing the conditions under which they are unreliable has become critical for their deployment, although this is
often an afterthought. I will find vulnerabilities in these systems and develop the tools needed for the next genera-
tion of these models to be more reliable. In particular, I am interested in exploring what modifications to input data
can disrupt generative models’ capabilities in creating specified types of content. Further, as automated ML-based
tools to regulate human behavior online becomemore prevalent, it is critical to audit their effectiveness. Leveraging
insights frommy analytical work to determine the failure modes of these systems, I aim to help enhance their ability
to appropriately regulate online speech. I am curious to explore these questions and others asML continues to evolve
rapidly, all the while focusing on enhancing trust in ML systems.
2. Reliability as a fundamental property: As the next generation of ML systems is created and deployed, long-term
robustness to vulnerabilities, new and old, must be treated as a key property from inception. Current methods for
building robust ML systems are either too expensive, lack generalization to new threats, or both. To this end, I am
continuing to explore the interplay between fundamental limits on robustness and reliable ML system design. Cur-
rently, I am investigating the use of soft labels from conflict graphs over empirical distributions to guide training. I
am also interested in how the scope of adverse conditions studied can be expanded, providing new constraints under
which systemsmust bemade reliable. I am studying the fundamental limits of robustness in the presence ofmultiple
test-time attackers. In tandem, I am undertaking empirical research guided by these limits to build systems that can
respond to new vulnerabilities that arise over their lifetime, leading to continual reliability. I find the temporal aspect
of ML system deployment to be a rich one for theoretical investigation, as reliability must be maintained over time.
Reliable ML research can also increase everyday users’ trust, by protecting from them pernicious uses of ML such as
website fingerprinting attacks [22]. This insight drives my goal of building reliable, yet flexible, ML systems that end
users can navigate according to their personal choices.
3. Enabling continuedgrowth forML:AsML systems consume ever-increasing amounts of data, wemay be reaching
a plateau in terms of the performance that can be obtained by just ingesting raw data. In addition, the data hungry
nature of current state-of-the-art ML systems ensures that only the most powerful stakeholders tend to have access
to and say in the development of newML systems. I believe continued, democratized growth inML is only possible if
techniques are developed to obtain relevant new data in data scarce regimes such as healthcare and cybersecurity. I
aim to develop methods for task-aware data acquisition that would enable stakeholders with limited data to explore
new data sources whileminimizing commitment, computational overhead and privacy risks. Making thesemethods
resilient to manipulation is an important future step in deploying it widely. Synthetic data generation using gener-
ative models is also a promising method to overcome data scarcity. My collaborators and I found that creative mod-
ifications of diffusion models allows for high quality data generation even in domains with stricter data constraints
such as networking [14]. Together, these data-centric approaches can drive the next generation of ML systems.
Funding and collaboration: I recognize that the key to achieving my future research goals is to maintain ongoing
collaborations while building new ones. I intend to continue my theory-driven work with Prof. Daniel Cullina (Penn
State) on determining fundamental limits of robustness, extending it to new adversaries andmodels. I have an abid-
ing collaboration with my Ph.D. advisor Prof. Prateek Mittal (Princeton) on analyzing and building reliable systems,
particularly for training and test-time robustness. I am also working with Prof. Ben Zhao (University of Chicago) on
finding vulnerabilities for generative image models such as diffusion models and with Prof. Nick Feamster (Univer-
sity of Chicago) on overcoming data scarcity in networking aswell as auditing the reliability ofMLmodels for content
moderation.
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