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Can we argue rigorously about when a classifier exists that can
distinguish between adversarially modified points?
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Intuition: Use data geometry

Space of data

Note: Composite
cost 0 only if cost
0 regions for two
points intersect

No classifier can distinguish .~
(i.e. at least one point is misclassified)
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How do we compute the cost between class-wise distributions?

Find the joint distribution with the lowest cost: C'( Py, P_1) = inf Ex,,x_1)~py o le(X1, X_1)]

Py _1€ll(Py,P_1)
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Discrete distributions: Minimum weight matching

For discrete i.i.d distributions, minimum cost is achieved at disjoint pairing of points,
i.e. minimum weight matching

LA %)

Cost of this matchlng = _

4 1 1
Loss of Optimal Classifier (with adversary) is 0= 3 (1 — 5)
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- Kantorovich duality provides an alternate formulation of optimal transport in terms of potential functions:

C(P, Poy) = supElo(X_0)) ~EIf(X1)] N
9 . ~ -
X ¢
- Degraded classifiers combine classification and adversarial constraints: BT
~ . N €ZT C h_l PXfl PX1
h(x){y @ Chy) |
1 :otherwise. ————
h(z)=-1 h(x)=L h(z)=1
1
- Following potentials are valid for the composite cost: d
~ ~ g
fx)=1-1[h(x)=1]  g(x) =1[h(z)=-1] °
- Adversarial robustness is related to potentlial functions and degraded classifiers:
L= L(h, P,N) = S (E[1[h(X1) = 1]] + E[1[2(X 1) = —1]])
1
= 5 (Elg(X-1)] + 1 - E[f(X1)])

1
= 1-L(h,P.N) < o (1+C(P1,P_1))






Main Theorem
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Then, for any pair of distributions Px,, Px_,on X

1
inf L(h, P,N) = _ (1 - C(Px,,Px_,))

where h : X — {1, —1}can be any measurable function.

Takeaways

- Holds under very mild assumptions on space and distributions (valid for all practical cases)

- Lower bound on loss for any classifier

- Quantity on the right is easier to compute in cases of interest
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Theorem
wf L(h, P, N) =1 = 20N (1, X), N (=, %)) = Q(a™ (8, 1))

where Q(+) is the complementary cumulative distribution function

of the standard normal.
o™ (B, p)is the solution to a convex optimization problem balancing

natural and adversarial noise.




Special Case: Gaussian data

Let 1 :N(Ma Z)v P :N(_Mv Z)

Let N(z) =z + BB W
Theorem

where Q(+) is the complementary cumulative distribution function

of the standard normal.
o™ (B, p)is the solution to a convex optimization problem balancing

natural and adversarial noise.

Takeaways
For convex, symmetric adversaries,

- Optimal strategy is to ‘translate and pair’
- Optimal classifier is linear
- Optimal loss has a closed form
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