

Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries

Arjun Nitin Bhagoji*, Daniel Cullina*, Vikash Sehwag and Prateek Mittal

PRINCETON UNIVERSITY

Speed limit 80kmph

Overarching Question: What is the best performance any classifier can achieve in the presence of a worst-case perturbation?

Cat and mouse game

- Defenses which improve upon regular training found by accounting for the attack

Cat and mouse game

- Defenses which improve upon regular training found by accounting for the attack
- Stronger (computationally and/or algorithmically) attack found, increasing loss

Cat and mouse game

- Defenses which improve upon regular training found by accounting for the attack
- Stronger (computationally and/or algorithmically) attack found, increasing loss

Breaking the cycle

- Lower bound determines lowest loss for the **best defense** against the **best attack**, ending the cat and mouse game!

Cat and mouse game

- Defenses which improve upon regular training found by accounting for the attack
- Stronger (computationally and/or algorithmically) attack found, increasing loss

Breaking the cycle

- Lower bound determines lowest loss for the **best defense** against the **best attack**, ending the cat and mouse game!
- Provides essential information on
 - Regimes where robustness is achievable

Cat and mouse game

- Defenses which improve upon regular training found by accounting for the attack
- Stronger (computationally and/or algorithmically) attack found, increasing loss

Breaking the cycle

- Lower bound determines lowest loss for the **best defense** against the **best attack**, ending the cat and mouse game!
- Provides essential information on
 - Regimes where robustness is achievable
 - Convergence of training

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Graph representation and solution

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Graph representation and solution -Probability on vertices represents classifier output

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Graph representation and solution -Probability on vertices represents classifier output -Edges represent overlapping perturbation balls and

Minimal working example

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Graph representation and solution -Probability on vertices represents classifier output -Edges represent overlapping perturbation balls and -Enforce constraints on the convex minimization problem

Data distribution and Attack

- Data (in \mathbb{R}^d) is drawn from two classes (1 and -1), with equal sampling probability for each point
- Attacker perturbs data in ℓ_2 ball around each datapoint
- **Goal**: Find the minimum crossentropy loss achievable by **any classifier**

Graph representation and solution -Probability on vertices represents classifier output -Edges represent overlapping perturbation balls and -Enforce constraints on the convex minimization problem -Intersection of polytope and loss surface gives correct classification probs.

Efficiently computing lower bounds

Efficiently computing lower bounds

Generic convex solver

Tractable in theory, but too slow in practice (~13 hours for complete 2-class CIFAR-10)

Efficiently computing lower bounds

Generic convex solver

Tractable in theory, but too slow in practice (~13 hours for complete 2-class CIFAR-10)

Custom algorithm

- Simultaneously finds both the optimal classifier (primal) and attack (dual)
- Achieves 1000x speed-up by
 - iteratively splitting graph into portions where probs. are over/under-estimated
 - Utilizing the bipartite graph structure
- Enables the computation of lower bounds in a vast range of settings

Optimal cross-entropy loss

Optimal cross-entropy loss

- Identifies regimes for each dataset where the 2-class robust classification problem is challenging/impossible

Optimal cross-entropy loss

- Identifies regimes for each dataset where the 2-class robust classification problem is challenging/impossible
- Bound increases with number of samples

Optimal cross-entropy loss

- Identifies regimes for each dataset where the 2-class robust classification problem is challenging/impossible
- Bound increases with number of samples

Comparing to empirical

- Current robust training is close to optimal (w.r.t strong empirical attack) at lower budgets

Optimal cross-entropy loss

- Identifies regimes for each dataset where the 2-class robust classification problem is challenging/impossible
- Bound increases with number of samples

Comparing to empirical

- Current robust training is close to optimal (w.r.t strong empirical attack) at lower budgets
- Gap exists between the empirical loss of a robustly trained classifier and optimal one at higher budgets

Optimal cross-entropy loss

- Identifies regimes for each dataset where the 2-class robust classification problem is challenging/impossible
- Bound increases with number of samples

Comparing to empirical

- Current robust training is close to optimal (w.r.t strong empirical attack) at lower budgets
- Gap exists between the empirical loss of a robustly trained classifier and optimal one at higher budgets
- Closing the gap and its impact on generalization is an **open question**

Paper: https://arxiv.org/abs/2104.08382

Code: https://github.com/arjunbhagoji/logloss-lower-bounds

