Analyzing Federated Learning through an Adversarial Lens

PRINCETON UNIVERSITY

Arjun Nitin Bhagoji ¹, Supriyo Chakraborty ², Prateek Mittal ¹ and Seraphin Calo ² ¹ Princeton University ² I.B.M. Research

IBM Research

Attack Strategies for Model Poisoning

 $\boldsymbol{\delta}_{\mathrm{mal}} = \operatorname{argmin} L_{\mathrm{mal}} \left(\{ \mathbf{x}^l, T^l \}_{l=1}^{n_{\mathrm{mal}}}; \mathbf{w}_G + \boldsymbol{\delta} \right)$

 $oldsymbol{\delta}$ $oldsymbol{\delta}_{ ext{mal}}
ightarrow eta oldsymbol{\delta}_{ ext{mal}}$

 $\boldsymbol{\delta}'_{\mathrm{mal}} = \operatorname{argmin} L_{\mathrm{mal}} \left(\{ \mathbf{x}^l, T^l \}_{l=1}^{n_{\mathrm{mal}}}; \mathbf{w}_G + \boldsymbol{\delta} \right)$

 $oldsymbol{\delta'_{ ext{mal}}}
ightarrow eta oldsymbol{\delta'_{ ext{mal}}}$

Concatenated training

Dataset: Fashion MNIST [2]

Malicious objective is to ensure (sandal, class 5) is classified Model: CNN with 91.7% test set accuracy as a sneaker (class 7)

 $\boldsymbol{\delta}_{\mathrm{mal}} = \operatorname{argmin} L\left(\{\mathbf{x}_m^i, y_m^i\}_{i=1}^{n_m}; \mathbf{w}_G + \boldsymbol{\delta}\right) + 1$

Compute update w.r.t. malicious

learning process?

Targeted Model Poisoning

objective Boost update when sending back to server 0.4 Validation Accuracy (Global)
Conf. (5→7) on Global

Repeat:

Takeaway: Malicious objective is met with high confidence while ensuring global model convergence but malicious update clearly distinguishable

Add benign training and distance constraints

Eval. Setup

Boost only malicious component

Takeaway: Malicious agent is closer in accuracy and weight update statistics to benign agents but convergence is erratic

Alternating minimization with distance constraints

Alternate between malicious and benign objectives

Can control number of steps for each $\boldsymbol{\delta}_{\text{mal}}'' = \operatorname{argmin} L_{\text{ben}} \left(\{ \mathbf{x}_m^i, y_m^i \}_{i=1}^{n_m}; \mathbf{w}_G + \beta \boldsymbol{\delta}_{\text{mal}}' + \boldsymbol{\delta} \right) + \rho \| \boldsymbol{\delta} - \boldsymbol{\delta}_{\text{cons}} \|_2^2$

Takeaway: Tighter control over the two objectives leads to targeted model poisoning with stealth in both accuracy and weight update statistics

Val. Acc. (Global) Conf. $(5 \rightarrow 7)$ Global \longrightarrow

Attack stealth measure: distance

For each strategy, we show the spread of L_2 distances between all the benign agents and between the malicious agent and the benign agents.

Takeaway: Spread of distances for malicious agent with alternating minimization is almost indistinguishable from that between benign agents'

Attacking Byzantine-resilient aggregation

0.4

Krum: chooses set of k-Attack works without boosting 2 updates closest to each other since no model

Coomed: performs averaging coordinate-wise median

Takeaway: Model poisoning is effective against Byzantine-resilient aggregation

Estimation to improve attacks

Pre-optimization correction with previous step estimate of benign agents' effects

$$\hat{\boldsymbol{\delta}}_{[k]\setminus m} = \hat{\mathbf{w}}_G^{t-1} + \hat{\boldsymbol{\delta}}_{[k]\setminus m} + \alpha_m \boldsymbol{\delta}_m^t$$

$$\hat{\boldsymbol{\delta}}_{[k]\setminus m} = \boldsymbol{\delta}_{[k]\setminus m}^{t-1}$$

Attack	Targeted model poisoning		Alternating minimization	
Estimation	None	Prev. Step	None	Prev. Step
t=2	0.63	0.82	0.17	0.47
t=3	0.93	0.98	0.34	0.89
t=4	0.99	1.0	0.88	1.0

Takeaway: Estimation increases attack effectiveness, making it stronger earlier

Interpreting Poisoned Models

Interpretability techniques [3] provide insights into the internal feature representations and working of a neural network

Global model trained using only 10 benign agents

Global model trained with one malicious model among 10

Takeaway: Relevant input features used by the two models are almost visually imperceptible, further exposing the fragility of interpretability [4]

Conclusion

- Federated learning is very vulnerable to model poisoning attacks
- Detection mechanisms can make these attacks more challenging but these can be overcome
- Open research question: Can we develop distributed learning algorithms robust to model poisoning attacks?

References

- [1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017
- [2] Xiao et al., Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747, 2017
- [3] Alber et al., iNNvestigate neural networks!, arXiv preprint arXiv:1808.04260, 2018 [4] Adebayo et al., Sanity checks for saliency maps, NeurlPS 2018