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Threat Model: Targeted Model Poisoning
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Key Question: What if one of the agents is malicious, and aims to poison the

learning process?
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Attack Strategies for Model Poisoning
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Takeaway: Malicious agent is closer in accuracy and weight update statistics
to benign agents but convergence is erratic

Takeaway: Malicious objective is met with high confidence while ensuring
global model convergence but malicious update clearly distinguishable
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Takeaway: Tighter control over the two objectives leads to targeted model
poisoning with stealth in both accuracy and weight update statistics
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Interpreting Poisoned Models

- Interpretability techniques [3] provide insights into the internal feature
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Takeaway: Relevant input features used by the two models are almost
visually imperceptible, further exposing the fragility of interpretability [4

Takeaway: Model poisoning is effective against Byzantine-resilient aggregation
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Takeaway: Estimation increases attack
effectiveness, making it stronger earlier

Conclusion

Federated learning is very vulnerable to model poisoning

attacks

Detection mechanisms can make these attacks more challenging
but these can be overcome

Open research question: Can we develop distributed learning
algorithms robust to model poisoning attacks?
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