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ABSTRACT

In a recent work, Bombin, Duclos-Cianci, and Poulin showed that every local translationally
invariant 2D topological stabilizer code is locally equivalent to a finite number of copies of
Kitaev’s toric code. In this thesis, we focus on color codes and relax the constraint on translation
invariance. We show that any color code can be mapped to exactly two copies of a related
surface code. The surface code in our map is induced by the color code and easily derived from
the color code. Furthermore, our map does not require any ancilla qubits for the surface codes.
We also indicate the various degrees of freedom in constructing the map and the consequent
variations. We derive an algorithm to map an arbitrary color code to a pair of surface codes and
demonstrate how this mapping can be used with various examples and simulations.
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CHAPTER 1

Introduction

From Richard Feynman’s idea in 1982 of a computer based on quantum mechanical principles,
to David Deutsch’s notion of a universal quantum computer developed later in the 1980s and
Peter Shor’s remarkable 1994 proofs that both integer factorization and the ’discrete logarithm’
could be solved in an efficient manner, quantum computing has had a short but eventful his-
tory [10]. Of fundamental importance in quantum computing are questions of both scope and
implementation. We seek to understand which problems can be solved in less time and space
using quantum computers and how to develop quantum algorithms for these problems. To have
widely available quantum computers which can be used to run these algorithms on a day-to-
day basis, we need to look at issues of implementation. Quantum computing implementations
suffer from various crippling problems at the moment such as decoherence and the lack of scal-
ability. Many groups around the world are working on these problems and some small-scale
demonstrations have been made, with some critical breakthroughs made just this year (2015)
using an implementation of quantum computers that is the central topic of this thesis.

Apart from computing, the other great technical advance of the modern age is that of com-
munication. Starting with Claude E. Shannon’s remarkable papers in 1948, great advances
have been made in the field of communication. Many good error-correcting codes have been
constructed to try and achieve the reliable transmission of information through a noisy channel.
In 1995, Ben Schumacher proved the quantum analog of one of Shannon’s theorems and since
then, much work has gone into developing quantum error-correcting codes. First, the epony-
mous Calderbank-Shor-Steane codes and later stabilizer codes, discovered independently by
Calderbank, Shor, Steane and Rains, and Gottesman, have provided us with evidence that good
quantum codes exist to help protect the information stored in quantum bits or qubits. Quantum
codes help in both the protection of qubits used for computation as well as for the transmission
of information.

In 1997, Kitaev [7] came up with a new approach to quantum computing known as topolog-
ical quantum computing. In a topological quantum computer, quasiparticles known as anyons
are braided to form quantum gates. These quantum computers are much more stable than
the ones made using the standard approach of trapped particles as the information for these
computers is stored in their topological degrees of freedom which remain unaffected by local
perturbations of the qubits. There are various types of topological codes, such as surface codes
and color codes, and they have different properties which have an influence on their suitabil-



ity for use in a practical quantum computer. Recently, scientists at IBM [3] , implemented a
surface code based quantum computer and performed error-correction on it.

In this thesis, we study the relation between two types of topological codes, namely, surface
codes and color codes. As we shall see in subsequent chapters, they each have their advantages
and disadvantages, and relating the two paves the way towards realizing quantum computers
which have robust yet efficient error-correcting schemes.
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CHAPTER 2

Preliminaries

In this chapter, we will take a brief look at some ideas and concepts essential to the rest of
the thesis. We start by studying quantum codes and their connection to classical codes. Then,
we move on to an important class of quantum codes known as stabilizer codes. The decoding
of quantum codes is then explained in some detail, with various standard methods presented.
Finally, a short introduction to quantum circuits and belief propagation is given.

2.1 Quantum error models

Noise is as omnipresent in quantum information processing systems as it is in classical ones.
The effect of noise in a quantum system is to change the state of qubits, which are being used
for the transmission of information or to perform computations, in undesirable ways.

2.1.1 Bit and phase flip channels

The most common quantum noise model is the bit flip channel, which is very similar to its
classical counterpart, the binary symmetric channel. The binary symmetric channel flips the
transmitted bit with a probability p > 0 and leaves it unchanged with probability 1 − p. Sim-
ilarly, the bit flip channel changes the state of a qubit from |0〉 to |1〉 and vice versa with
probability p. The operators acting on a single qubit in the bit flip channel are:

Eb0 =
√

1− pI & Eb1 =
√
pX. (2.1)

A quantum error channel that has no classical analog is the phase flip channel. With probability
p, it changes the phase of qubit from positive to negative or vice versa. It leaves the phase
unchanged with probability 1 − p. The operators that act on a single qubit in a phase flip
channel are:

Ep0 =
√

1− pI & Ep1 =
√
pZ. (2.2)



2.1.2 Depolarizing channel

Consider a quantum system in a state ρ. In a depolarizing channel, this state ρ is replaced by the
completely mixed state I/2 with probability p, which is the probability that it is depolarized.
The state is left unchanged with probability 1 − p and so the state of the system after passing
through a depolarizing channel is

E(ρ) =
pI

2
+ (1− p)ρ. (2.3)

Now, we observe that we can write I
2

as follows:

I

2
=
ρ+XρX + Y ρY + ZρZ

4
(2.4)

and substitute it back into Eq. 2.3 to get

ρ = (1− 3p

4
)ρ+

p

4
(XρX + Y ρY + ZρZ) (2.5)

which can be parametrized using p′ = 3p
4

so we can interpret the depolarizing as acting on
the state with each of X , Y and Z with probability p′

3
and leaving the state unchanged with

probability 1− p′:

ρ = (1− p′)ρ+
p′

3
(XρX + Y ρY + ZρZ). (2.6)

2.2 Quantum Codes

The ideas related to quantum error-correcting codes that are necessary and relevant for the
remainder of the thesis are explained using the example of the 3-qubit bit flip code, which is
quite similar to the 3-bit repetition code used in classical error correction.

2.2.1 Syndromes and error correction

Consider the bit flip channel with probability p of flipping a qubit (as defined earlier) acting
on a qubit passing through it. Let the initial state be |ψ〉 = a|0〉 + b|1〉, where a, b ∈ C. With
probability p, the Pauli operator X acts on this state and flips |0〉 to |1〉 and vice versa. Without
any encoding of this state, the error probability is just p. To decrease the probability of error,
we can now encode |0〉 as |000〉 and |1〉 as |111〉. We denote |000〉 as |0L〉, as a logical |0〉 and
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|111〉 as |1L〉, as a logical |1〉. Now, the state |ψ〉 is encoded as

|ψ〉 → a|000〉+ b|111〉. (2.7)

Now suppose the encoded state is passed through the bit flip channel, and the channel acts
independently on each of the 3 qubits in the encoded state. Then, we can measure the syndrome
of the state after it has passed through the channel using the following projection operators:

P0 = |000〉〈000|+ |111〉〈111|, (2.8)

P1 = |100〉〈100|+ |011〉〈011|, (2.9)

P2 = |010〉〈010|+ |101〉〈101|, (2.10)

P3 = |001〉〈001|+ |110〉〈110|. (2.11)

P0 corresponds to no errors while each Pi corresponds to a bit flip error on qubit i. We get
the syndrome by performing the operation 〈ψ||Pi||ψ〉, and depending on the syndrome that is
obtained after measurement, the necessary error correction steps are performed. If there is no
error, nothing is done to the outut. Otherwise, depending on which qubit there was an error on,
an X operator is applied on that again in order to correct it. Note that as long as only single
qubit bit-flip errors occur on the encoded state, this procedure to correct errors work. If there
are two or more bit-flip errors, then we will not be able to recover the initial state perfectly.
Thus, the probability of error we get using this code is 3p2(1− p) + p3 = 3p2 − 2p3, which is
an improvement over the error p obtained without any coding.

2.2.2 Stabilizer formalism

Consider again the 3-qubit bit flip code from the previous section. The logical qubits that make
up the encoded state, |000〉 and |111〉 are left unaffected by Z1Z2 and Z2Z3. |000〉 and |111〉
are the unique states that are left unaffected these operators, i.e. they are stabilized by these
operators. These generate the stabilizer group for this particular code and are known as the
stabilizer generators. The three qubit bit flip code, as we have seen, can perfectly correct all
single qubit bit flip errors, i.e. it can detect and correct errors in the set E = {I,X1, X2, X3}.
The stabilizer generators Z1Z2 and Z2Z3 anti-commute with every with every possible product
of two operators from the set E.

Also, we see that we perform syndrome measurements using the stabilizers. For example,
if the error X1 occurred, it will anti-commute with the first stabilizer and commute with the
second, giving the syndrome −1 and 1. Similarly, each of the other single qubit X errors will
give a unique syndrome, and so we can detect and correct all these errors perfectly, mirroring
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our earlier analysis without stabilizers.

The stabilizer formalism gives us a clean and elegant representation of quantum codes and
can be used even to describe quantum gates. The analysis done above can be simply extended
to other, more complex codes.
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CHAPTER 3

Topological Codes

One of the essential requirements for any quantum computing system is fault tolerance. In
quantum circuits, qubits interact with each other through various means and if qubit is in error,
then the qubit it is interacting with is also likely to become erroneous. For example, in a CNOT
gate if the control qubit is in error, it is likely that its error will spread to the target qubit.
In this manner, there may be a catastrophic propagation of errors leading to a failure in the
computation. To avoid this and have fault-tolerant quantum computation, we can replace each
physical qubit with an encoded qubit and act on these encoded qubits with encoded gates, after
each of which we can perform error correction. The encoded gates that are used should not
allow errors to propagate to a large number of qubits, i.e. they should be ’local’ in a sense. It
has been shown that an universal set (the Hadamard, phase, CNOT and π

8
gates) of encoded

gates can be implemented in a fault tolerant manner. An important proerty of gates which
automatically makes them fault-tolerant is tranversality- that is, if the gate can be implemented
in a bitwise manner, it is called a transversal gate. Looking for transversality while designing
quantum gates gives us a general guiding principle by which to construct fault-tolerant circuits.

It is in this context that topological quantum codes, first introduced by Kitaev [7], are seen
as a promising approach towards a practical quantum computer. Topological quantum codes,
by the nature of their arrangement of qubits in a lattice, allow for local syndrome extraction
and thus fault tolerant quantum computation. Topological codes are a subset of stabilizer codes,
with the stabilizers typically located on lattice vertices and faces. We will see that in topological
codes, the encoded information is stored in global degrees of freedom which are not affected
by local errors. Gates can be designed to act on the information contained in these global
degrees of freedom, which will make them fault tolerant towards local errors, which can be
easily corrected without affecting the state of the quantum system. Topological codes can be
constructed and studied in dimensions greater than 2, but we will focus on two-dimensional
topological codes. It is instructive to study the code originally proposed by Kitaev in [7] before
looking at other topological code constructions.

3.1 Kitaev’s toric code

In Kitaev’s toric code, the physical qubits can be understood to be located on the edges of a
square lattice embedded on a torus, i.e. a square with its opposite sides identified. Without



loss of generality, the X-type stabilizers are taken to reside on the vertices of the lattice and the
Z-type stabilizers on the faces or plaquettes of the lattice. Each X-type stabilizer is a tensor
product of the 4 X-type operators at that vertex (and identity on all other qubits) and each
Z-type stabilizer is a tensor product of the 4 Z-type operators surrounding the plaquette (and
identity on all other qubits). Even though X and Z operators anti-commute, all the stabilizers
commute with each other since they always cross one another an even number of times. If

X

X

X
X

Z

Z

Z Z

Figure 3.1: X-type stabilizer on the vertices and Z-type stabilizer on the plaquettes

the qubits are embedded on a l × l lattice, then there are 2l2 physical qubits. Also, due to the
periodicity of the toric code lattice, there are l2− 1 independent stabilizers of each type, X and
Z, so the number of encoded qubits is

n− g = 2l2 − (2(l2 − 1)) = 2. (3.1)

Without loss of generality and for clarity of exposition, we will assume errors come only from
the phase flip channel, i.e. Z-type errors. An identical analysis can be perfomed with X-type
errors and combinations of X and Z type errors. Suppose there is a single Z-type error on
the toric code. Then, it will affect the two X-type stabilizers residing at the vertices which
the edge in error connects and those will take on the value −1. We can also think of a charge
residing at those two points in the lattice, created due to the Z-type error. If there is a chain
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(sequence of edges) of Z-type errors, then the charge will only reside at the vertices at the two
ends of the chain, i.e. only those stabilizers will have a −1 value associated with them. In the
charge picture, X and Z-type errors create different types of charges, which are localized on
the plaquettes and vertices respectively.

The syndromes that we obtain from the toric code are highly ambiguous due to the fact that
multiple chains can begin and end at the same vertices. If the cycle formed by the error and
its estimate is a homologically trivial cycle, i.e. it is the boundary of a chain of plaquettes,
then the encoded state is not affected by that error. The homologically trivial cycle that we
obtain is in fact a product of stabilizers and thus does not affect the code. On the other hand,
if the cycle formed is a homologically non-trivial cycle, i.e. it is not the boundary of any chain
of plaquettes and it winds around the torus, then the encoded state is affected by that error.
Although the non-trivial cycle commutes with all the stabilizers, it is not a product of them.

Figure 3.2: Cycle on the left: Homologically trivial cycle. The two syndromes shown could
have arisen from either the top chain or bottom chain, hence the ambiguity in the
syndrome. If the top chain was the original error and the bottom one our estimate,
the encoded state is undamaged by this error.
Cycle on the right: Homologically non-trivial cycle. The cycle winds around the
torus and is clearly not the boundary of any chain of plaquettes. It commutes with
all the stabilizers but is not a product of them. In fact, it is the product of an encoded
or logical Z operation and a plaquette stablilizer.
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Thinking in terms of charges, in a homologically trivial cycle, a charge is created, moved in
a cycle that does not wind around the torus and brought back to annihilate with the other charge
comprising the initially formed pair. In this case, the quantum system remains undamaged.
However, if the charge winds around the torus before annihilating its paired charge, then the
system is damaged. From this, we can clearly see that an encoded or logical Z operator is
formed by a non-trivial cycle of Z-type errors winding around any of the two cycles of the
torus. Thus, there are two logical Z operators, Z1′ and Z2′ on the primary lattice and two
logical X operators, X1′ and X2′ that come from non-trivial cycles on the dual lattice. The
dual lattice is the lattice formed by interchanging the positions of vertices and plaquettes on the
primary lattice. i.e. we place plaquettes with their centers at the vertices of the primary lattice
and shrink plaquettes to get the dual lattice vertices.

Z1'

X1'

Z2'

X2'

Figure 3.3: The basis for the 4 logical operators that act on the encoded qubits.

The weight of Pauli operator is defined as the number of qubits on which it acts with a non-
trivial single qubit Pauli operator. Then, the distance of a stabilizer code is the weight of the
Pauli operator with minimum weight that affects the encoded qubits but still commutes with all
the stabilizers. Thus, for a toric code on a l × l lattice, the code distance is l. We see that we
can increase the code distance by just increasing the size of the lattice, which in turn increases
the number of physical qubits. However, increasing the size of the lattice does not affect the
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number of encoded qubits.

The qubits of the square lattice can also be placed on planar topology with a boundary
as opposed to a toriodal one without boundaries to give a topological code. In the case of
the planar code, however, not all the stabilizers are the same. Those at the boundary behave
differently from those in the interior of the lattice. Further generalizations of the toric code are
discussed in subsequent sections.

3.2 Surface codes

Kitaev’s toric code is an example of a more general class of codes known as surface codes.
The main idea of surface codes, like the toric code, is to store information in homological or
global degrees of freedom. Surface codes are not restricted to a lattice or surface of a particular
type. In general, the surfaces that are chosen for embedding the lattice are closed, connected
and orientable. We choose closed surfaces because typically we only have a finite number of
qubits in the code and a closed surface suffices. Orientable (having an inside and outside) and
connected (we can move from one point to another without jumps) surfaces are chosen for
simplicity’s sake, in order to avoid surfaces with odd, non-intuitive topologies.

We use the following notation: the Pauli group on n qubits is denoted Pn. We denote the
vertices of a graph Γ by V(Γ), and the edges by E(Γ). The set of edges incident on a vertex v is
denoted as δ(v) and the edges in the boundary of a face by ∂(f). Assuming that Γ is embedded
on a suitable surface we use F(Γ) to denote the faces of the embedding and do not always make
explicit reference to the surface.

A surface code on a graph Γ is a stabilizer code where the qubits are placed on the edges of
Γ and whose stabilizer S is given by

S = 〈Av, Bf | v ∈ V(Γ), f ∈ F(Γ)〉, (3.2)

where Av =
∏

e∈δ(v) Xe and Bf =
∏

e∈∂(f) Ze. The Pauli group on the qubits of a surface code
is denoted as PE(Γ). Now, these stabilizer generator are subject to the following constraints:∏

v∈V

Av = 1 &
∏
f∈F

Bf = 1, (3.3)

so not all of them are independent. Denoting the number of edges, vertices and faces by E,
V and F respectively, from Eq. 3.3 we get that there are V − F + 2 independent generators.
We know that the number of encoded qubits in a stabilizer code is just the number of physical
qubits minus the number of independent generators, so for the surface code we have k =
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E− (V +F −2) encoded qubits. The quantity V +F −E is known as the Euler characteristic
of the surface and it is equal to 2(1 − g) for closed orientable surfaces, where g is the genus
of the surface. The genus of a surface can be understood as the number of handles it has, for
example, a coffee mug has genus 1 while a sphere has genus 0. This gives us the number of
encoded qubits for a surface code as

k = E − V − F − 2 = 2− 2(1− g) = 2g. (3.4)

There are four types of topological charges on a surface code: i) electric charge (denoted
ε) localized on the vertices, ii) magnetic charge (denoted µ) living on the plaquettes, iii) the
composite electric and magnetic charge denoted εµ which resides on both the plaquettes and
vertices, and iv) the vacuum denoted ι. Of these, only two charges are independent. We shall
take this pair to be the electric and magnetic charges. A charge composed with another charge
of the same type gives the vacuum i.e. c × c = ι. The electric charges are created by Z-type
errors and magnetic charges by X-type errors on the surface code.

A hopping operator is any element of the Pauli group that moves the charges. On a surface
code, we can move the electric charges from one vertex to another by means of a Z-type Pauli
operator. We denote byHε

u↔v the operator that moves ε from vertex u to v and vice versa. If we
consider the magnetic charges then the movement can be accomplished by means of an X-type
Pauli operator. The operator that moves a magnetic charge from face f to f ′ (or vice versa) is
denoted by Hµ

f↔f ′ .

Elementary hopping operators are those which move charges from one vertex to an adjacent
vertex or from one plaquette to an adjacent plaquette. Let e = (u, v) be the edge incident on
the vertices u, v. We denote the elementary hopping operator along e as Hε

e , where Hε
e = Ze.

It is a specific realization of Hε
u↔v. Similarly, the elementary operator that moves µ across e

is denoted as Hµ
e . Let e be the edge shared by the faces f and f ′, then Hµ

f↔f ′ can be realized
by Hµ

e where Hµ
e = Xe. Observe that Hε

u↔v and Hµ
f↔f ′ anti-commute when they act along

the same edge, while operators for the same type of charges commute. In general, Hε
u↔v and

Hµ
f↔f ′ commute if and only if they cross an even number of times.

In spite of the many advantages that surface codes have, they are limited in terms of the
number of transversal gates that can be implemented. To overcome this, we look at another
class of topological codes that allow us to implement the entire Clifford group transversally.
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3.3 Color codes

Color codes are a seprate class of topological codes that are similar to surface codes but not
identical, as they have an additional property of ’color’ associated with their faces. Unlike the
surface codes which do not For 2D color codes, we consider lattices known as 2-colexes that
can be colored using 3 colors. A 2-colex is a trivalent, 3-face-colorable complex. A stabilizer
code is defined on a 2-colex by attaching qubits to every vertex code and defining the stabilizer
S as

S = 〈BX
f , B

Z
f | v ∈ F(Γ)〉 where Bσ

f =
∏
v∈f

σv. (3.5)

We denote the Pauli group on these qubits as PV(Γ); the c-colored faces of Γ by Fc(Γ) and the c-
colored edges of Γ by Ec(Γ). We restrict our attention to 2-colexes which do not have multiple
edges (the surface codes could contain multiple edges though). This is not a severe restriction
because a 2-colex with multiple edges can be modified to another 2-colex without them but
encoding the same number of qubits and possessing the same error correcting capabilities (in
terms of distance). We also assume that all embeddings are 2-cell embeddings so that all faces
are homeomorphic to unit discs.

On a color code, the topological charges live on the faces. In addition to being electric
and/or magnetic, they also carry a color depending on which face they are present. Let us denote
the electric charge on a c-colored face as εc, the magnetic charge as µc and the composite charge
as εcµc. The electric charges are not all independent [1]. Any pair (two out of three colors) of
them can be taken as the independent set of electric charges. Similarly, only two magnetic
charges are independent. As for surface codes, electric (magnetic) charges are created by Z
(X) errors on the color code.

Similarly, we can define hopping operators for color codes. Let f, f ′ ∈ Fc(Γ) be two
plaquettes connected by an edge (u, v) where u ∈ f and v ∈ f ′. Then Hεc

f↔f ′ and Hµc
f↔f ′ are

the operators that move εc and µc from f to f ′. A realization of these operators along (u, v) is
Hεc
u,v = ZuZv and Hµc

u,v = XuXv. An element of the stabilizer can be viewed as a combination
of hopping operators which move a charge around and bring it back to the original location.
Since this movement cannot be detected, we can always adjoin an element of the stabilizer to
the hopping operators.
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CHAPTER 4

Equivalence between color codes and surface codes

Toric codes [7] proposed by Kitaev are one of the most studied classes of topological quan-
tum codes and of fundamental importance in fault tolerant quantum computing. Although toric
codes and their generalization–surface codes, have many attractive features (such as local sta-
bilizer generators, low complexity decoders, efficient fault tolerant protocols, a high circuit
threshold [5, 6, 11]), they have a limited set of transversal gates. On other hand, a class of
topological color codes can implement the entire Clifford group transversally [1]. This might
suggest that color codes are inequivalent to toric codes. However, in a very surprising develop-
ment, Bombin et al. [2] showed that translationally invariant 2D color codes can be mapped to
a finite number of copies of Kitaev’s toric code.

Our goal is to find a map between a color code and some related surface codes. We shall
denote this map by π for the rest of the paper. We shall first describe the construction of π
in an informal fashion, emphasizing the principles underlying the map, and then rigorously
justify all the steps. The key observation, due to [2], is that there are four types of charges on a
surface code and sixteen types of charges on a color code. This is the starting point for relating
the color code to surface codes. The two pairs of independent charges on the color code i.e.
{εc, µc′} and {εc′ , µc} suggest that we can decompose the color code into a pair of toric codes
by mapping {εc, µc′} charges onto one toric code and {εc′ , µc} onto another. However, charge
“conservation” is not the only constraint. We would like a map that preserves in some sense the
structure of the color code and allows us to go back and forth between the color code and the
surface codes. We shall impose some conditions on this map keeping in mind that we would
like to use it in the context of decoding color codes.

First, observe that the electric charges on the surface codes live on the vertices while the
magnetic charges live on the plaquettes. But, if we consider the pair of charges {εc, µc′}, they
both live on plaquettes—one on the c-colored plaquettes and another on c′-colored plaquettes.
A natural way to make the association to a surface code is to contract all the c-colored plaquettes
in the embedding of Γ. This will give rise to a new graph τc(Γ). We can now place the
charges εc and µc′ on the vertices and plaquettes of τc(Γ) respectively. Similarly, the charges
{µc, εc′} can live on the vertices and plaquettes of another instance of τc(Γ). We impose the
following (desirable) constraints on the map π. It must be (i) linear, (ii) invertible, (iii) local,
(iv) efficiently computable, (v) preserve the commutation relations between the (Pauli) error
operators on V(Γ) i.e. PV(Γ), and (vi) consistent in the description of the movement of charges



on the color code and surface codes. These constraints are not necessarily independent and in
no particular order. It is possible to relax some of the constraints above.

One immediate application of our results, as in [2, 4, 9], is an alternate decoding scheme
for color codes via surface codes.

4.1 Deducing the map—A linear algebraic approach

The maps proposed in [2] are based on the following ideas: i) conservation of topological
charges ii) identification of the hopping operators and iii) preserving the commutation relations
between the hopping operators. These ideas are central to our work as well. However, we take
a simpler linear algebraic approach to find the map.

Suppose we have a 2-colex Γ. Then, upon contracting all the c-colored faces including their
boundary edges, we obtain another complex. We denote this operation as τc and the resulting
complex as τc(Γ) (see Fig. 4.1). We suppress the subscript if the context makes it clear and
just write τ . There is a one-to-one correspondence between the c-colored faces of Γ and the
vertices of τ(Γ), so we can label the vertices of τ(Γ) by f ∈ Fc(Γ). We also label them by τ(f)

to indicate that the vertex was obtained by contracting f . Similarly, the edges of τ(Γ) are in
one-to-one correspondence with the c-colored edges of Γ, so an edge τ(Γ) is labeled the same
as the parent edge e = (u, v) in Γ. The faces which are not in Fc(Γ) are mapped to faces of
τ(Γ). Therefore, we label the faces as f or more explicitly as τ(f), where f 6∈ Fc(Γ). Thus, the
complex τ(Γ) has the vertex set Fc(Γ), edge set Ec(Γ) and faces Fc′(Γ) ∪ Fc′′(Γ). Since every
vertex v in Γ has a unique c-colored edge incident on it, we can associate to it an edge in τ(Γ)

as τ(v).

Now, each c-colored face in Γ can host εc and µc. With respect to τc(Γ), they both reside on
the vertices of Γc. So we shall place them on two different copies of τc(Γ) denoted Γ1 and Γ2.
Then, the charges εc and µc will play the role of an electric charge on Γ1 and Γ2, respectively.
So, we shall make the identification εc ≡ ε1 and µc ≡ ε2. The associated magnetic charges on
Γi will have to reside on F(Γi). Possible candidates for these charges must come from εc′ , εc′′
and µc′ , µc′′ . The following lemma addresses these choices.

Lemma 1 (Charge mapping). Let c, c′, c′′ be three distinct colors. Then, {εc, µc′} and {εc′ , µc}
are permissible pairings of the charges so that the color code on Γ can be mapped to a pair of
surface codes on Γi = τc(Γ). In other words, ε1 ≡ εc, µ1 ≡ µc′ , ε2 ≡ µc and µ1 ≡ εc′ , where εi
and µi are the electric and magnetic charges of the surface code on Γi.

Proof. First, observe that operators that move the electric charges εc and εc′ are both Z-type,
therefore they will always commute. This means that if εc is identified with the electric charge
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Figure 4.1: Illustrating the contraction of a color code via τc and the resultant surface code.
Only portions of the codes are shown. The c-colored faces are vertices in τc(Γ).
The faces f 6∈ Fc(Γ) remain faces in τc(Γ) and are also labeled f in τc(Γ), while the
c-colored edge e = (u, v) in Γ is mapped to an edge in τc(Γ), so we retain the label
e. Every vertex in Γ is incident on a unique c-colored edge, so we can also extend τc
to vertices u, v and edges unambiguously by defining τc(u) = τc(v) = τc(u, v) = e.

on a surface code, εc′ cannot be the associated magnetic charge. That leaves either µc and µc′ .
Of these, observe that any operator that moves µc will always overlap with any operator that
moves εc an even number of times. Therefore, this leaves only µc′ . The operators that move
εc and µc′ commute/anti-commute when they overlap an even/odd number of times just as the
electric and magnetic charges of a surface code justifying the association ε1 ≡ εc and µ1 ≡ µc′ .
A similar argument shows the validity of the equivalence ε2 ≡ µc and µ2 ≡ εc′ .

Let Γ have n vertices and Fc vertices of color c. Then, Γi has Fc vertices, n/2 edges and
Fc′ + Fc′′ faces. Together Γ1 and Γ2 have n qubits. We desire that π accurately reflect the
movement of the independent charges on the color code and the surface codes. So, π must map
the hopping operators of the charges of the color code on Γ to the hopping operators of the
surface code on Γi. As mentioned earlier, Hεc

u,v moves electric charges on c-colored plaquettes
and Hεc′

u,v electric charges on c′-colored plaquettes. But, although these charges may appear to
be independent, due to the structure of the color code they are not. A c′′-colored plaquette on
the color code is bounded by edges whose color alternates between c and c′. The Z-type stabi-
lizer associated to this plaquette, i.e. BZ

f , can be viewed as being composed of Hεc
u,v hopping

operators that move εc, in which case we would expect to map BZ
f onto Γ1. But, BZ

f can also
be viewed as being composed of Hεc′

i,j . Thus, we see that there are two possible combinations
of hopping operators that give the same plaquette stabilizer; one composed entirely of hopping
operators of c-colored charges and the other of hopping operators of c′-colored charges. This
suggests that there are dependencies among the hopping operators and some of them, while
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ostensibly acting on only one kind of charge, could still be moving the other type of charges.
However, the overall effect on the other charge must be trivial, i.e. it must move the charge
back to where it started. A similar argument can be made for BX

f which moves the magnetic
charges. The next lemma makes precise these dependencies.

Figure 4.2: Circled hopping operator is the dependent operator. In addition to

Lemma 2 (Dependent hopping operators). Let f ∈ Fc′′(Γ) and 1, . . . , 2`f be the vertices in its
boundary so that (2i− 1, 2i) ∈ Ec(Γ), (2i, 2i+ 1) ∈ Ec′(Γ) for 1 ≤ i ≤ `f and 2`f + 1 ≡ 1.
If π is invertible, then π(Bσ

f ) 6= I and there are 4`f − 2 independent elementary hopping
operators along the edges of f .

Proof. The stabilizer generator BZ
f is given as

BZ
f =

2`f∏
i=1

Zi =

`f∏
i=1

Z2i−1Z2i = Z1Z2`f

`f−1∏
i=1

Z2iZ2i+1 (4.1)

=

`f∏
i=1

Hεc
2i−1,2i = H

εc′
1,2`f

`f−1∏
i=1

H
εc′
2i,2i+1. (4.2)

We see that BZ
f can be expressed as the product of `f hopping operators of type Hεc

u,v or type
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H
εc′
u,v. Further, we have

π(BZ
f ) =

`f∏
i=1

π(Hεc
2i−1,2i) = π(H

εc′
1,2`f

)

`f−1∏
i=1

π(H
εc′
2i,2i+1)

If π(BZ
f ) = I , then ker(π) 6= I which means that π is not invertible and it would not

be possible to preserve the information about the syndromes, as π(BZ
f ) would commute with

all the error operators. So, we require that π(BZ
f ) 6= I . This means that only one of these

hopping operators is dependent and there are 2`f − 1 independent hopping operators. The
linear independence of the remaining 2`f − 1 operators can be easily verified by considering
their support. Similarly, BX

f also implies that there are another 2`f − 1 independent hopping
operators, giving us 4`f − 2 in total.

We are now ready to define the action of π on elementary hopping operators. Without loss
of generality we can assume if f ∈ Fc′′(Γ) has 2`f edges, then the dependent hopping operators
of f are Hεc′

1,2`f
and Hµc′

2m,2m+1 i.e. Z1Z2`f and X2mX2m+1, where 1 ≤ m ≤ `f and 2`f + 1 ≡ 1.

Lemma 3 (Elementary hopping operators). Let f, f ′ ∈ Fc(Γ) where the edge (u, v) is incident
on f and f ′. Then, the following choices reflect the charge movement on Γ onto the surface
codes on Γi.

π(Hεc
u,v) =

[
Zτ(u)

]
1

=
[
Zτ(v)

]
1

(4.3)

π(Hµc
u,v) =

[
Zτ(u)

]
2

=
[
Zτ(v)

]
2
, (4.4)

where [T ]i indicates the instance of the surface code on which T acts. Now if f, f ′ ∈ Fc′(Γ) and
(u, v) ∈ Ec′(Γ) such that u ∈ f and v ∈ f ′ and Hεc′

u,v and Hµc′
u,v are chosen to be independent

hopping operators of f , then

π(Hεc′
u,v) =

[
Xτ(u)Xτ(v)

]
2

; π(Hµc′
u,v ) =

[
Xτ(u)Xτ(v)

]
1
. (4.5)

Proof. We only prove forHεc
u,v andHµc′

u,v . Similar reasoning can be employed forHµc
u,v andHεc′

u,v.
(i) Hεc

u,v: This operator moves εc from f to f ′ in Γ. These faces are mapped to adjacent vertices
in τ(Γ). By Lemma 1, εc is mapped to ε1, so π(Hε

u,v) should move ε1 from the vertex τ(f)

to the vertex τ(f ′) on Γ1. Many hopping operators can achieve this; choosing the elementary
operator gives π(ZuZv) = [Zτ(u,v)]1. Since τ(u, v) = τ(u) = τ(v), Eq. (4.3) follows. (ii) Hµc′

u,v :
This operator moves µc′ from f to f ′. Since µc′ is mapped to µ1, π(H

µc′
u,v ) should move µ1 from

the plaquette τ(f) to τ(f ′) on Γ1. The operator on the first surface code which achieves this is
an X-type operator on qubits τ(u) and τ(v) in Γ1, i.e. [Xτ(u)Xτ(v)]1. In both cases we choose
the hopping operators to be of minimum weight.
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Figure 4.3: Mapping the independent hopping operators Hεr
u,v = Hεr

f1↔f2 = ZuZv and Hεb
u′,v′ =

Hεb
f↔f ′ = Zu′Zv′ on Γ onto two copies of τ(Γ) i.e. Γ1 and Γ2; π(Hεr

f1↔f2) = [Zτ(u)]1
acts only on Γ1 while Hεb

f↔f ′ = [Xτ(u′)Xτ(v′)]2 acts only on Γ2.
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Lemma 3 does not specify the mapping for the dependent hopping operators but it can be
obtained as a linear combination of the independent ones. Alternative choices to those given in
Lemma 3 exist for π. These choices are essentially alternate hopping operators on the surface
codes which accomplish the same charge movement. Such operators can be obtained by adding
stabilizer elements to those given in Eqs. (4.3)–(4.5).

In this paper we explore the choice when the operators Hεc′
1,2`f

and Hµc′
2m,2m+1 are dependent.

The c′′-faces form a covering of all the vertices of Γ and they are non-overlapping. The elemen-
tary hopping operators along the edges on such plaquette do not interact with the elementary
hopping operators of other plaquettes in Fc′′(Γ). So we can consider each f ∈ Fc′′(Γ) indepen-
dently. This also makes sense from our constraint to keep π local. Based on Lemmas 2 and 3,
we can map the independent elementary hopping operators of f along c-colored edges. They
map elementary hopping operators on Γ to elementary hopping operators on Γi.

π(Z2i−1Z2i) = [Zτ(2i)]1 and π(X2i−1X2i) = [Zτ(2i)]2 (4.6)

Next, we consider the hopping operators that involve the c′-colored edges. Without loss
of generality we assume that the edge Z1Z2`f is the one which carries the dependent hopping
operator andX2mX2m+1 carries the other dependent hopping operator. Then letting 2`f+1 ≡ 1

we have

π(Z2iZ2i+1) = [Xτ(2i)Xτ(2i+1)]2 ; 1 ≤ i < `f (4.7)

π(X2iX2i+1) = [Xτ(2i)Xτ(2i+1)]1 ; 1 ≤ i 6= m ≤ `f . (4.8)

All these operators and their images under π are linearly independent as can be seen from
their supports. From Lemma 3 we obtain the images for the dependent hopping operators:

π(H
εc′
1,2`f

) = [Xτ(1)Xτ(2`f )]2

`f∏
i=1

[Zτ(2i)]1 (4.9)

π(H
µc′
2m,2m+1) = [Xτ(2m)Xτ(2m+1)]1

`f∏
i=1

[Zτ(2i)]2 (4.10)

To complete the map it remains to find the action of π for two more independent errors on the
color code. One choice is any pair of single qubit operators Xi and Zj , where 1 ≤ i, j ≤ 2`f .
Or we can consider the images under π. We can see from Eqs. (4.6)–(4.8) that the images are
also linearly independent and only single qubit X-type of errors remain to be generated. One
choice is any [Xτ(i)]1 on Γ1 and [Xτ(j)]2 on Γ2, where 1 ≤ i, j ≤ 2`f . That is, we need to
find E,E ′ such that π(E) = [Xτ(i)]1 and π(E ′) = [Xτ(j)]2 respect the commutation relations.
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Lemma 4 addresses this choice.

Lemma 4 (Splitting). The following choices lead to an invertible π while respecting the com-
mutation relations with hopping operators in Eqs. (4.6)–(4.8).

π(gX1) = [Xτ(1)]1 where g ∈ {I, BX
f , B

Y
f , B

Z
f } (4.11)

π(gZ2m) = [Xτ(2m)]2 where g ∈ {I, BX
f } (4.12)

Proof. Each face f ∈ Fc′′(Γ) accounts for 2`f qubits i.e. 4`f independent operators. Now
[Xτ(1)]1 and [Xτ(2m)]2 form a linearly independent set of size 4`f along with the images of
the independent elementary hopping operators on f . Thus, the elementary hopping operators
and the preimages of [Xτ(1)]1 and [Xτ(2m)]2 account for all the 4`f operators on qubits on f .
Considering all faces in Fc′′(Γ), we have

∑
f 4`f = 2n operators which generate PV(Γ). Since

their images are independent and Γ1∪Γ2 has exactly as many qubits as Γ, π must be invertible.

Next, we prove these choices respect the commutation relations as stated. Consider [Xτ(1)]1:
this error commutes with all the operators in Eq. (4.6)–(4.8) except π(Z1Z2) = [Zτ(1)]1. There
are 4`f − 3 such hopping operators on f with which π−1([Xτ(1)]1) must commute. As a con-
sequence of the rank-nullity theorem there are 24`f−(4`f−3) such operators. It can be verified
that 〈X1, B

X
f , B

Z
f 〉 account for these operators. But π−1([Xτ(1)]1) must also anti-commute

with Z1Z2. This gives the choices in Eq. (4.11) since operators in 〈BX
f , B

Z
f 〉 commute with

Z1Z2. Now let us determine π−1([Xτ(2m)]2). Once again with reference to Eq. (4.6)–(4.8)
we see that it must commute with 4`f − 3 hopping operators on f . It also commutes with
π−1([Xτ(1)]1) since [Xτ(2m)]2 commutes with [Xτ(1)]1 . Again, due to a dimensionality argument
there are 24`f−(4`f−2) choices for π−1([Xτ(2m)]2). Since [Xτ(2m)]2 anti-commutes with [Zτ(2m)]2

its preimage must anti-commute with π−1([Zτ(2m)]2) = X2m−1X2m giving two choices Z2m

and Z2mB
X
f . We can check that Z2m satisfies all the required commutation relations as does

the choice Z2mB
X
f .

In Lemma 4 we first assigned π−1([Xτ (1)]1) followed by π−1([Xτ(2m)]2). Changing the order
restricts g to {I, BX

f } in Eq. (4.7) while g ∈ {I, BX
f , B

Y
f , B

Z
f } in Eq. (4.8).

Lemma 5 (Preserving commutation relations). The map π preserves commutation relations of
error operators in PV(Γ).

Proof of Lemma 5. We only sketch the proof. It suffices to show that the commutation relations
hold for a basis of PV(Γ). We consider the basis consisting of the hopping operators along c
and c′ edges in Eq. (4.6)–(4.8) and the single qubit operators given in Lemma 4. The proof of
Lemma 4 shows that the commutation relations are satisfied for the single qubit operators. Con-
sider a hopping operator along c′-colored edge. This anti-commutes with exactly two hopping
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operators along c-colored edges on Γ. For instance consider Z2iZ2i+1. From Eq. (4.6)–(4.8)
this anti-commutes withX2i−1X2i andX2i+1X2i+2. Their images under π are [Xτ(2i)Xτ(2i+1)]2,
[Zτ(2i)]2 and [Zτ(2i+1)]2 for which it is clear that the commutation relations are satisfied.

The operators along the c-colored edges are given in Eq. (4.6). Suppose we consider
π(Z2i−1Z2i); then it anti-commutes with X2i−2X2i−1 and X2iX2i+1. We only need to ver-
ify for those operators which are independent. Assume that they are both independent, then
their images are Xτ(2i−2)Xτ(2i−1) and Xτ(2i)Xτ(2i+1) respectively. They anti-commute with
π(Z2i−1Z2i) = [Zτ(2i−1)]1 = [Zτ(2i)]1. If only one of the operators is independent, then we
need only verify for that operator. The preceding argument already establishes this result. We
can argue in a similar fashion to show that commutation relations are preserved for the operators
of the type X2i−1X2i and X2iX2i+1.

Lemma 6 (Preserving code capabilities). Under π, stabilizers of the color code on Γ are
mapped to stabilizers on the surface codes on Γ1 and Γ2.

Proof of Lemma 6. To prove this, it suffices to show that the stabilizers associated with pla-
quettes of all three colors are mapped to stabilizers on the surface codes. If Γi = τc(Γ), then
we show that the stabilizers associated with f ∈ Fc′(Γ) ∪ Fc′′(Γ) are mapped to the plaquette
stabilizers on Γi. If f ∈ Fc′(Γ), then BZ

f =
∏`f

i=1 H
εc
2i−1,2i. By Lemma 3 this is mapped to∏`f

i [Zτ(2i)]1 =
∏

e∈∂(τ(f))[Ze]1. Using a similar argument we can show that BZ
f ∈ Fc′′(Γ) is

also a plaquette stabilizer on Γ1. Since faces in Fc′(Γ)∪Fc′′(Γ) are in one to one correspondence
with the faces of τ(Γ), they account for all the face stabilizers on Γ1. By considering BX

f , we
can similarly show that they map to the face stabilizers on Γ2.

Now consider a face f ∈ Fc(Γ). Consider BZ
f , this can be decomposed into hopping

operators Hεc′
u,v along c′-edges. By Lemma 3, such an operator maps to [Xτ(u)Xτ(v)]2 and an

additional stabilizer on one of the faces of Γ1 if Hεc′
u,v is a dependent hopping operator. Thus

BZ
f maps to a vertex operator on τ(f) in Γ2 and possibly a combination of plaquette stabilizers.

Since every vertex in Γ2 is from a face in Γ, we can account for all the vertex operators on
Γ2. Similarly, by considering the stabilizer BX

f we can account for all the vertex operators on
Γ1.

Theorem 7. Any 2D color code (on a 2-colex Γ without parallel edges) is equivalent to a pair
of surface codes τ(Γ) under the map π defined as in Algorithm 1.

Proof Sketch. By charge conservation we require two copies of τ(Γ) to represent the color code
using surface codes. Lines 2–3 follow from Lemma 1. Since c′′-colored faces in Fc′′(Γ) cover
all the qubits of the color code, we account for all the single qubit operators on the color code by
the for-loop in lines 4–10. The closed form expressions for single qubit errors in lines 6–9 are a
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Algorithm 1 Mapping a 2D color code to surface codes
Input: A 2-colex Γ without parallel edges; Γ is assumed to have a 2-cell embedding.
Output: π : PV(Γ) → PE(Γ1) ⊗ PE(Γ2), where Γi = τc(Γ).

1: Pick a color c ∈ {r, g, b} and contract all edges of Γ that are colored {r, g, b} \ c to obtain
τ(Γ). Denote two instances of τ(Γ) as Γ1 and Γ2.

2: Choose charges εc, µc, εc′ and µc′ on Γ, where c′ 6= c.
3: Set up correspondence between charges on Γ and Γi as follows: ε1 ≡ εc, µ1 ≡ µc′ , ε2 ≡ µc

and µ2 ≡ εc′ .
4: for each c′′-colored face f in F(Γ) do
5: Let the boundary of f be v1, . . . v2`f .
6: Choose a pair of c′-colored edges in ∂(f), say (v2`f , v1) and (v2m, v2m+1). Let [T ]i

denote that T acts on Γi.

π(Zv1) =
[
Xτ(v1)

]
2

m∏
i=1

[
Zτ(v2i)

]
1

(4.13)

7: For 1 ≤ j ≤ `f compute the mapping (recursively) as

π(Zv2j) = π(Zv2j−1
)
[
Zτ(v2j)

]
1

(4.14)

π(Zv2j−1
) = π(Zv2j−2

)
[
Xτ(v2j−2)Xτ(v2j−1)

]
2

(4.15)

8: For 1 ≤ j ≤ m compute the mapping as

π(Xv1) =
[
Xτ(v1)

]
1

(4.16)

π(Xv2j) = π(Xv2j−1
)
[
Zτ(v2j)

]
2

(4.17)

π(Xv2j−1
) = π(Xv2j−2

)
[
Xτ(v2j−2)Xτ(v2j−1)

]
1

(4.18)

9: For m+ 1 ≤ j ≤ `f compute the mapping as

π(Xv2`f
) =

[
Xτ(v2`f )

]
1

(4.19)

π(Xv2j−1
) = π(Xv2j)

[
Zτ(v2j)

]
2

(4.20)

π(Xv2j) = π(Xv2j+1
)
[
Xτ(v2j)Xτ(v2j+1)

]
1

(4.21)

10: end for
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direct consequence of Lemmas 3, 4 and the choices given in Eqs. (4.6)–(4.8) and Eqs. (4.11)–
(4.12). By considering the images of the stabilizers of the color code, we can show that they
are mapped to the stabilizers of the surface codes on Γi (see Lemma 6). From Lemma 5, the
commutation relations among the hopping operators on the color code in Eq. (4.6)–(4.8) and
the single qubit operators in Eq. (4.11)–(4.12) are preserved. Hence, the errors corrected by the
color code are the same as those corrected by the surface codes on Γi. Thus the color code is
equivalent to two copies of τ(Γ).

4.2 Comparison with other maps

Authors (Approach) Translation
invariance

No. of
copies

Ancilla
qubits

Other comments

Bombin et. al. Yes Finite,
could be
many

Sometimes Applicable for all
translation invari-
ant 2D stabilizer
codes

Delfosse (Algebraic
topology and hyper-
graphs)

No 3 Yes Not bijective

Present work (Lin-
ear algebraic)

No 2 No Bijective

Table 4.1: Comparison with previous work

The result in [2], as well the subsequent papers [14? ] which explore the equivalence
between stabilizer codes and toric codes in great detail, have one important qualifier, namely
translational invariance. For 2D color codes, Delfosse [4] relaxed the constraint on translation
invariance and mapped a 2D color code to three surface codes. In this paper, we propose an
alternate map based on linear algebra. We map arbitrary color codes, including those that are
not translationally invariant, onto two copies of a surface code.

The main differences between the proposed map (and its variations) and that of [2] are: first,
the map therein requires local translation symmetry. Second, in the map in [2], the number of
toric codes onto which the color code is mapped need not always be two. On the other hand,
our map always gives exactly two surface codes. These surface codes need not be copies of the
toric code on the square lattice. Third, the proposed map does not require any ancilla qubits, as
may be the case for some codes under the map in [2]. Even for arbitrary color codes, our map
is efficiently computable locally and we compute the images for all the single qubit errors on
the color code in closed form. On the other hand, the results in [2] go beyond color codes and
include all local translationally invariant 2D stabilizer codes and certain subsystem codes.
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Our work differs from that of [4] in the following aspects. The map in [4] projects onto three
copies of surface codes. Therefore, our map leads to a lower decoding complexity compared
to [4]. Furthermore, unlike our map which is a bijective map onto the surface codes, the map
in [4] is not bijective, although it is injective. This has a bearing in the context of decoding.
In some cases, a decoder using the map in [4] may not be able to lift an error (estimate) from
surface codes to (the parent) color code. This will not occur with a decoder using our map.

Following the submission of our paper, we became aware of the work by Kubica, Yoshida,
and Pastawski [9] who showed equivalence between color codes and toric codes for all dimen-
sions D ≥ 2. In 2D, for color codes without boundaries, their result is similar to ours but there
are substantial differences. First, they map the color code onto two different surface codes, we
map onto two copies of the same surface code. Second, we use linear algebra to study these
equivalences, which is simpler than the approach taken in [9] (or [2, 4]).
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CHAPTER 5

Examples

In this chapter, we will look at the mapping from color codes to surface codes for three types
of lattices, two with translational symmetry and one without. The lattices with translational
symmetry are the hexagonal lattice and the square-octagonal lattice. These are two of the
three 2D regular lattices that are 3-colorable, the third one being the truncated trihexagonal
lattice [12]. The hexagonal lattice has already been used in the previous chapter to illustrate
various lemmas. As in (preliminaries section), Fr, Fg and Fb represent the sets of red, green
and clue faces respectively.

5.1 Square-octagonal lattice

Consider a 16 qubit color code on a square octagonal lattice embedded on a torus.

R1 R2

R4 R3

G1

B2

B2

G2

B2B2

1 2

3

4

56

7

8

910

11G2

12

13 14

15

16

For this code, the number of independent stabilizer generators is

g = 2(|Fr|+ |Fg|+ |Fb|)− 4,

= 2(4 + 2 + 2)− 4 = 12,



and so the number of encoded qubits is

k = n− g,
= 16− 12,

= 4.

Thus, the code parameters are [16, 4, 7]2. The code is mapped to two copies of Kitaev’s toric
code, each of which has 8 qubits. The mapping of the hopping operators is illustrated below:

X
X

Z Z

Z
Z

X
X

X

X

Z

X
X

Z

Figure 5.1: Color-coded mapping of independent hopping operators from the color code to the
two copies of the toric code. Red: Hµc′

1,8 is mapped to [Xτ(1)Xτ(8)]1; blue: Hεc
5,6 is

mapped to [Zτ(5)]1 = [Zτ(6)]1; green: Hµc
3,4 is mapped to [Zτ(3)]2 = [Zτ(4)]2; pink:

H
εc′
16,9 is mapped to [Xτ(9)Xτ(16)]2.

Without loss of generality, we choose the dependent Z operator to be Hεc′
1,8 on G1 and the

dependentX operator onG1 to beHµc′
2,3 . From Lemma 4, we choose the single qubitX operator

to be X1 and the single qubit Z operator to be Z2, i.e., we take m = 1 in 4.11. These choices
lead to the following valid map for X and Z type errors on G1 from the color code to the two
copies of Kitaev’s toric code. It can be easily verified that the map satisfies all commutation
relations and that stabilizers on the color code map to stabilizers on the toric code. The map
for errors on plaquette G2 can be derived in an identical fashion, by making choices consistent
with Lemmas 2 and 4. The color code is shown on the left and the surface codes on the right.
Each of the single qubit errors and their images are shown (in bold red).
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X X

X X

X

X

X

X

X

X

X Z

X

Z

X

Z

Z

X Z

Z

X Z

Z

Z

X Z

Figure 5.2: Mapping for X type errors on G1, starting with X1, which is the single qubit X
operator chosen according to Lemma 4. The dependent hopping operator is Hµc′

2,3 ,
which clearly maps to a Z stabilizer on [τ(G1)]2, as in Eq. 4.10.
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Z

Z

X

X

Z

X

X

X

X

Z

X

Z

Z

Z

Z

Z

Z

Z

Figure 5.3: Mapping for Z type errors on G1, starting with Z2, which is the single qubit Z
operator chosen according to Lemma 4. The dependent hopping operator is Hεc′

1,8,
which clearly maps to a Z stabilizer on [τ(G1)]1, as in Eq. 4.9.
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5.2 Hexagonal lattice

Consider a single green plaquette of a hexagonal code containing 6 qubits and its surrounding
plaquettes.

1
2
3

4
5

6
G1

The hexagonal color code is mapped to two copies of a surface code on a triangular lattice.
The mapping of the independent hopping operators is illustrated below:

Z
Z

Z

Z
Z

Z

Figure 5.4: Color-coded mapping of independent hopping operators from the color code to the
two copies of the surface code. Red: Hµc′

2,3 is mapped to [Xτ(2)Xτ(3)]1; blue: Hεc
5,6 is

mapped to [Zτ(5)]1 = [Zτ(6)]1; green: Hµc
3,4 is mapped to [Zτ(3)]2 = [Zτ(4)]2; pink:

H
εc′
6,1 is mapped to [Xτ(6)Xτ(1)]2.

Without loss of generality, we choose the dependent Z operator on G1 to be Hεc′
2,3 and the

dependentX operator onG1 to beHµc′
6,1 . From Lemma 4, we choose the single qubitX operator

to be X2 and the single qubit Z operator to be Z1. These choices lead to the following valid
map for X and Z type errors on G1 from the color code to the two copies of the triangular
surface code. It can be easily verified that the map satisfies all commutation relations and that
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stabilizers on the color code map to stabilizers on the surface code. The map for errors on other
plaquettes can be derived in an identical fashion, by making choices consistent with Lemmas 2
and 4.

Figure 5.5: Mapping for X type errors on G1, starting with X2, which is the single qubit X
operator chosen according to Lemma 4. The dependent hopping operator is Hµc′

6,1 ,
which clearly maps to a Z stabilizer on [τ(G1)]2, as in Eq. 4.10.
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Figure 5.6: Mapping for Z type errors on G1, starting with Z1, which is the single qubit Z
operator chosen according to Lemma 4. The dependent hopping operator is Hεc′

2,3,
which clearly maps to a Z stabilizer on [τ(G1)]1, as in Eq. 4.9.
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CHAPTER 6

Error models and simulations

One of the main objectives of finding a map between color codes and surface codes is to allow
for the efficient decoding of color codes. In that regard, we will derive some analytic expres-
sions for the error probabilities on the surface code given error probabilities on the color code.
This will enable us to assign the correct weights for qubits on the surface code when the match-
ing decoder is used for decoding. An overview of the decoding techniques used is given as
pseudo-code and finally the simulation results are presented.

At the moment, for our analysis, we have only used the bit flip and phase flip channels.
In subsequent work, we hope to calculate error probabilities and perform simulations for the
depolarizing channel as well.

6.1 Analytic error probabilities

For the rest of this section, pi,σ denotes the probability of an error σ ∈ I,X, Y, Z occuring on
qubit i. For notational convenience, and in departure from the notation in the rest of the thesis,
qubits on the color code are labeled using letters while those on the surface codes using digits.
We assume X and Z-type errors occur independently of one another on each qubit in the color
code and calculate the probabilities of error on each qubit of the surface codes based on the
map in (refer to section on Examples). For each qubit, we assume the errors that occur on it are
independent of the other qubits and calculate both the marginal error probability and the exact
single qubit error probability. In our calculations, we assume that the probabilities of error on
the qubits of the color code are not equal, allowing for flexibility in the overall color code error
model we consider. The expressions are derived only for a son
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1
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4
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6

Figure 6.1: One plaquette of the hexagonal color code mapped to two copies of the triangular
surface code. Note the labeling of qubits used to derive the error probabilities.

6.1.1 Marginal errors: hexagonal lattice

The error probabilities for each qubit on the two copies of the triangular surface codes are given
below:

p1,Z = pb,Z , (6.1)

p2,Z = pc,Z , (6.2)

p3,Z = pc,Z(1− pd,Z)(1− pe,Z) + pd,Z(1− pc,Z)(1− pe,Z) + pe,Z(1− pc,Z)(1− pd,Z) (6.3)

+ pc,Zpd,Zpe,Z , (6.4)

p4,Z = pa,X , (6.5)

p5,Z = pd,X(1− pe,X)(1− pf,X) + pe,X(1− pd,X)(1− pf,X) + pf,X(1− pd,X)(1− pe,X) +pd,Xpe,Xpf,X ,

(6.6)

p6,Z = pf,X , (6.7)

p1,X = pa,X(1− pb,X) + pb,X(1− pa,X), (6.8)

p2,X = pc,X(1− pd,X) + pd,X(1− pc,X), (6.9)

p3,X = pe,X(1− pf,X) + pf,X(1− pe,X), (6.10)

p4,X = pa,Z(1− pb,Z) + pb,Z(1− pa,Z), (6.11)

p5,X = pc,Z(1− pd,Z) + pd,Z(1− pc,Z), (6.12)

p6,X = pe,Z(1− pf,Z) + pf,Z(1− pe,Z). (6.13)

(6.14)

6.1.2 Exact single qubit errors: hexagonal lattice

Exact single qubit error probabilities for each qubit on the two copies of the triangular surface
codes are given below. These give the probability that a particular X or Z error occurs on only
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the qubit under consideration and all other qubits are error free:

p1,Z = pa,Zpb,Z(1− pc,Z − pc,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.15)

p2,Z = pc,Zpd,Z(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.16)

p3,Z = pe,Zpf,Z(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pc,Z − pc,X)(1− pd,Z − pd,X),

(6.17)

p4,Z = pa,Xpb,X(1− pc,Z − pc,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.18)

p5,Z = pc,Xpd,X(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.19)

p6,Z = pe,Xpf,X(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pc,Z − pc,X)(1− pd,Z − pd,X),

(6.20)

p1,X = pb,X(1− pa,Z − pa,X)(1− pc,Z − pc,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.21)

p2,X = pc,X(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.22)

p3,X = pc,Xpd,Xpe,X(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pf,Z − pf,X), (6.23)

p4,X = pa,Z(1− pb,Z − pb,X)(1− pc,Z − pc,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X)(1− pf,Z − pf,X),

(6.24)

p5,X = pd,Xpe,Xpf,X(1− pa,Z − pa,X)(1− pb,Z − pb,X)(1− pc,Z − pc,X), (6.25)

p6,X = pf,Z(1− pf,Z − pf,X)(1− pb,Z − pb,X)(1− pc,Z − pc,X)(1− pd,Z − pd,X)(1− pe,Z − pe,X).

(6.26)

(6.27)
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Figure 6.2: One plaquette of the square-octagonal color code mapped to two copies of Kitaev’s
toric code. Note the labeling of qubits used to derive the error probabilities.
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6.1.3 Marginal errors: square octagonal lattice

The error probabilities for each qubit on the two copies of Kitaev’s toric code are given below:

p1,Z = pa,Z , (6.28)

p2,Z = pd,Z(1− pe,Z)(1− pf,Z)(1− pg,Z)(1− ph,Z) + pe,Z(1− pd,Z)(1− pf,Z)(1− pg,Z)(1− ph,Z)

(6.29)

+ pf,Z(1− pd,Z)(1− pe,Z)(1− pg,Z)(1− ph,Z) + pg,Z(1− pd,Z)(1− pe,Z)(1− pf,Z)(1− ph,Z)

(6.30)

+ ph,Z(1− pd,Z)(1− pe,Z)(1− pf,Z)(1− pg,Z) (6.31)

p3,Z = pf,Z(1− pg,Z)(1− ph,Z) + pg,Z(1− pf,Z)(1− ph,Z) (6.32)

+ ph,Z(1− pf,Z)(1− pg,Z), (6.33)

p4,Z = ph,Z , (6.34)

p5,Z = pb,X , (6.35)

p6,Z = pc,X , (6.36)

p7,Z = pc,X(1− pd,X)(1− pe,X) + pd,X(1− pe,X)(1− pc,X) + pe,X(1− pc,X)(1− pd,X) + pc,Xpd,Xpe,X

(6.37)

p8,Z = pd,X(1− pe,X)(1− pf,X)(1− pg,X)(1− pc,X) + pe,X(1− pd,X)(1− pf,X)(1− pg,X)(1− pc,X)

(6.38)

+ pf,X(1− pd,X)(1− pe,X)(1− pg,X)(1− pc,X) + pg,X(1− pd,X)(1− pe,X)(1− pf,X)(1− pc,X)

(6.39)

+ pc,X(1− pd,X)(1− pe,X)(1− pf,X)(1− pg,X), (6.40)

p1,X = pa,X(1− pb,X) + pb,X(1− pa,X), (6.41)

p2,X = pc,X(1− pd,X) + pd,X(1− pc,X), (6.42)

p3,X = pe,X(1− pf,X) + pf,X(1− pe,X), (6.43)

p4,X = pg,X(1− ph,X) + ph,X(1− pg,X), (6.44)

p5,X = pa,Z(1− pb,Z) + pb,Z(1− pa,Z), (6.45)

p6,X = pc,Z(1− pd,Z) + pd,Z(1− pc,Z), (6.46)

p7,X = pe,Z(1− pf,Z) + pf,Z(1− pe,Z), (6.47)

p8,X = pg,Z(1− ph,Z) + ph,Z(1− pg,Z). (6.48)

(6.49)

The individual qubit errors can be calculated using a similar procedure as that for the hexagonal
code.
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6.2 Decoding procedure

We use our map from color codes to surface codes coupled with the perfect matching decoding
algorithm [5] in order to decode errors on the color code. The perfect matching algorithm
returns the minimum weight error corresponding to a syndrome ssurf , which is the collection
of endpoints of the error. The algorithm given below assumes that errors on the color code are
all of Z type, i.e. they come from a phase flip channel. An identical procedure can be used if
the errors are all of X type, i.e. they come from a bit flip channel.

6.2.1 Simulations

A C++ program based on the procedure outlined in Algorithm 2 was used to carry out simula-
tions to determine the error threshold. We used the Boost C++ libraries [13] and the Blossom
V [8] matching decoding algorithm for our simulations. As a trial, we first obtained the thresh-
old for Kitaev’s toric code with phase flip errors. Our simulations returned a threshold of 11%.

Figure 6.3: Phase decoding performance of standard matching decoding with uniform error
probabilities for toric code lattices of size 2.2m. Threshold obtained is approxi-
mately 11%.
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Algorithm 2 Decoding a 2D color code
Input: A 2-colex Γ without parallel edges; Γ is assumed to have a 2-cell embedding; error

probability pi of phase flip channel for qubit i on color code where i ∈ (1 · · · , 16)
1: Create a model of the color code with qubits as vertices and faces as stabilizers.
2: For each qubit i, generate an Z error with probability pi independent of the other qubits to

obtain the overall error EZ .
3: If a qubit has an error, set its associated vertex’s value to 1. Else, set it to 0.
4: for f ∈ FG do
5: Do a GF (2) sum over all the vertices contained in f .
6: if sum=0 then
7: The face has a trivial syndrome which we set to 0 in the syndrome vector scol
8: else if sum=1 then
9: The face has a non-trivial syndrome which we set to 1 in the syndrome vector scol

10: end if
11: end for
12: Create a two models of the surface code with the qubits as edges and X type stabilizers as

vertices.
13: Map the syndrome vector on Γ to the two models of a surface code, Γ1 and Γ2 using the

syndrome map derived from Algorithm 1.
14: for Γi, i ∈ {1, 2} do
15: Assign appropriate edge weights to each edge e based on the expressions in Section 6.1.

16: Collect all vertices which have a non-trivial syndrome in a set Vs.
17: Use Djikstra’s algorithm to find the shortest distance between each pair of vertices and

store the edges comprising the shortest path for each pair.
18: Create a complete graph Gd from all the vertices v ∈ Vs with edge weights correspond-

ing to the distance obtained in the previous step.
19: Run the matching algorithm on the distance graph Gd to get a matching M .
20: Look up the stored shortest paths from Step on the lattice corresponding to the edges of

M .
21: Find the edges associated with the symmetric difference of all the shortest path from

Step 14. This is the required minimum weight error pattern Emin.
22: Use the inverse map to determine the error EΓi

est on the color code Γ corresponding to
Emin.

23: end for
24: Combination of the two inverted error patterns EΓ1

est and EΓ2
est will give the corrected

errorEeston Γ.
25: if Eest is a homologically trivial cycle then
26: Decoding is successful.
27: else if Eest is a homologically non-trivial cycle then
28: Decoding has failed.
29: end if
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