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We provide details of white-box attacks in Section [I} further descriptions of
Gradient Estimation attacks in Section[2] the detailed evaluation setup in Section
descriptions and results for zero-query black-box attacks in Section [@ details
about query reduction based attacks in Section [5.1] more details and results for
adversarially trained models in Section[6] evaluation results for countermeasures
in Section[7} comparison with previous work in Section [§land more of the images
used to attack Clarifai as well as the method followed in choosing them in Section
]

1 White-box attacks

In this section, we describe two commonly used white-box attack methods. These
attacks are based on either iterative or single-step gradient based minimization
of appropriately defined loss functions of neural networks. The single-step Fast
Gradient method, first introduced by [8], utilizes a first-order approximation of
the loss function in order to construct adversarial examples for the model f.
The samples are constructed by performing a single step of gradient ascent for
untargeted attacks. Formally, the adversary generates samples x,q, with Lo
constraints (known as the Fast Gradient Sign (FGS) method) in the untargeted
attack setting as

Xadv =X+ €+ Sign(vng(xa y))a (1)

where £f(x,y) is the loss function with respect to which the gradient is taken.
Any loss function can be used and two commonly used ones are the cross-entropy
loss [7] and the logit loss [3]. Adversarial samples generated using the targeted
FGS attack are

Xady = X — € - sign(Vylr(x,T)), (2)

where T is the target class.
Iterative Fast Gradient methods are simply multi-step variants of the Fast
Gradient method described above [12], where the gradient of the loss is added to
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the sample for ¢+ 1 iterations, starting from the benign sample, and the updated
sample is projected to satisfy the constraints # in every step:

X;—g\} =1y (X;dv +a- Sign(vx;’dvgf (X;dv7 y)))a (3)

with x0; = x. Iterative fast gradient methods thus essentially carry out pro-

jected gradient descent (PGD) with the goal of maximizing the loss, as pointed

out by [16]. Targeted adversarial examples generated using iterative FGS are
Xoe = I (Xqy — - sign(Vie | 5(x4q,, T)))- (4)

adv

1.1 Beyond the cross-entropy loss

Prior work by [3] investigates a variety of loss functions for white-box attacks
based on the minimization of an appropriately defined loss function. In our
experiments with neural networks, for untargeted attacks, we use a loss function
based on logits which was found to work well for white-box attacks in [3]. The
loss function is given by

t(x,y) = max(p(x + 9), — max{p(x +9); : i # y}, —K), (5)

where y represents the ground truth label for the benign sample x, ¢(-) are the
logits. k is a confidence parameter that can be adjusted to control the strength
of the adversarial sample. Targeted adversarial examples are generated using the
following loss term:

Xady = X — € - sign(Vx(max(p(x); : i # T) — ¢(X)r))- (6)

2 Query-based attacks: analysis, expressions and images

In this section, we provide the expressions for attacks using the method of Fi-
nite Differences with the cross-entropy loss. We also provide the expressions for
targeted attacks using the method of finite differences. Details about Particle
Swarm Optimization can be found in Kennedy [10] and details about Simulta-
neous Perturbation Stochastic Approximation can be found in Spall [I9].

2.1 Approximate FGS with finite differences

In the untargeted FGS method, the gradient is usually taken with respect to the
cross-entropy loss between the true label of the input and the softmax probability
vector. The cross-entropy loss of a network f at an input x is then ¢;(x,y) =

— Z‘j);'l 1[5 = v logpj(x) = flogp{j(x), where y is the index of the original
class of the input. The gradient of ¢;(x,y) is
Vil (x)
Vil () = -2 ™)

py(x)
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An adversary with query access to the softmax probabilities then just has to
estimate the gradient of pg: (x) and plug it into Eq. to get the estimated gradient
of the loss. The adversarial sample thus generated is

FDy(pf (x),6
Xty — X+ ¢ - sign <<§3(X>>>
Py (x)

(8)

This method of generating adversarial samples is denoted as FD-xent. Targeted
black-box adversarial samples generated using the Gradient Estimation method
are then

(9)

pr(x)

FDx(p} (), 6>> |

Xadvxe~sign< 7
The targeted version of the method is denoted as FD-xent-T.

2.2 Estimating the logit-based loss

We also use the loss function based on logits described in Section If the
confidence parameter « is set to 0, the logit loss is max(¢(x + 6), — max{¢(x+
d); 1 i # y},0). For an input that is correctly classified, the first term is always
greater than 0, and for an incorrectly classified input, an untargeted attack is not
meaningful to carry out. Thus, the loss term reduces to ¢(x + d), — max{¢p(x +
8); : i # y} for relevant inputs.

An adversary can compute the logit values up to an additive constant by tak-
ing the logarithm of the softmax probabilities, which are assumed to be available
in this threat model. Since the loss function is equal to the difference of logits,
the additive constant is canceled out. Then, the finite differences method can be
used to estimate the difference between the logit values for the original class y,
and the second most likely class y', i.e., the one given by y’ = argmax;_, ¢(x);.
The untargeted adversarial sample generated for this loss in the white-box case
is Xadv = x + € - sign(Vx(@(x),s — ¢(x)y)). Similarly, in the case of a black-box
adversary with query-access to the softmax probabilities, the adversarial sample
is

Xadv = X + € - sign(FDx (¢ (), — ¢(x)y,0)). (10)
Similarly, a targeted adversarial sample is
Xady = X — € - sign(FDyx (max(¢p(x); : 4 £ T) — ¢(x)7,9)). (11)

The untargeted attack method is denoted as FD-logit while the targeted
version is denoted as FD-logit-T.

2.3 Effect of 6 on attack success

We find that for the logit loss, a large range of values of § are effective. For
example, on the MNIST dataset, § ranging from 1 x 1072 to 1 x 10~* achieves
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roughly the same success rate. Attack success rate decreases for lower values of
0 as the differences in logit values become small, leading to poor estimation. On
the other hand, the xent loss is more sensitive to the choice of § and performs
best for large values of §. In fact, it is most effective when set to 1.0 for the
MNIST dataset. Similar trends hold for the CIFAR-10 data.

2.4 Visualization of different levels of image distortion:

In Table [I] below, we qualitatively show adversarial samples with different dis-
tortion levels. We will add these samples to our updated version as well.

Table 1. Visualization of targeted black-box adversarial examples.
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3 Detailed evaluation setup

The empirical evaluation carried out in the paper and the supplementary mate-
rial is on state-of-the-art neural networks on the MNIST [I3] and CIFAR-10 [11]
datasets. The details of the datasets and the architecture and training procedure
for all models are given below.

3.1 Datasets

MNIST. This is a dataset of images of handwritten digits [13]. There are 60,000
training examples and 10,000 test examples. Each image belongs to a single class
from 0 to 9. The images have a dimension d of 28 x 28 pixels (total of 784)
and are grayscale. Each pixel value lies in [0, 1]. The digits are size-normalized
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and centered. This dataset is used commonly as a ‘sanity-check’ or first-level
benchmark for state-of-the-art classifiers. We use this dataset since it has been
extensively studied from the attack perspective by previous work.

CIFAR-10. This is a dataset of color images from 10 classes [I1I]. The images
belong to 10 mutually exclusive classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck). There are 50,000 training examples and 10,000
test examples. There are exactly 6,000 examples in each class. The images have
a dimension of 32 x 32 pixels (total of 1024) and have 3 channels (Red, Green,
and Blue). Each pixel value lies in [0, 255].

3.2 Model training details

In this section, we present the architectures and training details for both the
normally and adversarially trained variants of the models on both the MNIST
and CIFAR-10 datasets. The accuracy of each model on benign data is given in
Table

MNIST. Each pixel of the MNIST image data is scaled to [0,1]. We trained
four different models on the MNIST dataset, denoted Models A to D [2I] which
represent a good variety of architectures. For the attacks constrained with the
L distance, we vary the adversary’s perturbation budget € from 0 to 0.4, since
at a perturbation budget of 0.5, any image can be made solid gray. The model
details for the 4 models trained on the MNIST dataset are as follows:

1. Model A (3,382,346 parameters): Conv(64, 5, 5) + Relu, Conv(64, 5, 5) +
Relu, Dropout(0.25), FC(128) + Relu, Dropout(0.5), FC + Softmax

2. Model B (710,218 parameters) - Dropout(0.2), Conv(64, 8, 8) + Relu, Conv(128,
6, 6) + Relu, Conv(128, 5, 5) + Relu, Dropout(0.5), FC + Softmax

3. Model C (4,795,082 parameters) - Conv(128, 3, 3) + Relu, Conv(64, 3, 3) +
Relu, Dropout(0.25), FC(128) + Relu, Dropout(0.5), FC + Softmax

4. Model D (509,410 parameters) - [FC(300) + Relu, Dropout(0.5)] x 4, FC +
Softmax

Models A and C have both convolutional layers as well as fully connected layers.
They also have the same order of magnitude of parameters. Model B, on the
other hand, does not have fully connected layers and has an order of magnitude
fewer parameters. Similarly, Model D has no convolutional layers and has fewer
parameters than all the other models. Models A, B, and C all achieve greater
than 99% classification accuracy on the test data. Model D achieves 97.2% clas-
sification accuracy, due to the lack of convolutional layers. All models trained
on benign data are trained for 6 epochs using a training batch size of 64.

CIFAR-10. Each pixel of the CIFAR-10 image data is in [0,255]. We choose
two ResNet architectures for this dataset, which we denote as Resnet-32 [9] and
Resnet-28-10 [23]. For the attacks constrained with the Lo, distance, we vary
the adversary’s perturbation budget € from 0 to 28. Resnet-32 is a standard 32
layer ResNet with no width expansion, and Resnet-28-10 is a wide ResNet with
28 layers with the width set to 10, based on the best performing ResNet from
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Table 2. Attack success rates and average distortion for untargeted black-box at-
tacks. Gradient Estimation using Finite Differences is our method, which has per-
formance matching white-box attacks. Attacks on use MNIST an L., constraint of
€ = 0.3 and adversarial examples are transferred from Model B. For CIFAR-10, the Lo
constraint is € = 8 and adversarial examples are transferred from Resnet-32

‘ Baseline ‘Gradient Estimation using Finite Diﬂ'erences‘ Transferability-based
MNIST Single-step Iterative Single-step Iterative
Models D. of M. Rand. FD-xent FD-logit IFD-xent IFD-logit FGS-xent FGS-logit IFGS-xent IFGS-logit
A 148 (5.6) 8.5 (6.1) | 51.6 (3.3) 92.9 (6.1) 75.0 (3.6) 100.0 (2.1) | 66.3 (6.2) 80.8 (6.3) 89.8 (4.75) 88.5 (4.75)
B 81.5 (5.6) 7.8 (6.1) | 69.2 (4.5) 98.9 (6.3) 86.7(3.9) 100.0 (1.6) - - - -
CIFAR-10 Single-step Tterative Single-step Iterative
Models D. of M. Rand. FD-xent FD-logit IFD-xent IFD-logit FGS-xent FGS-logit IFGS-xent IFGS-logit
Resnet-32 9.3 (440.5) 19.4 (439.4)[49.1 (217.1) 86.0 (410.3) 62.0 (149.9) 100.0 (65.7) |74.5 (439.4) 76.6 (439.4) 99.0 (275.4) 98.9 (275.6)
Resnet-28-10(6.7 (440.5) 17.1 (439.4)|50.1 (214.8) 88.2 (421.6) 46.0 (120.4) 100.0 (74.9) - - - -

Zagoruyko and Komodakis [23]. The width indicates the multiplicative factor by
which the number of filters in each residual layer is increased.

Resnet-32 is trained for 125,000 steps and Resnet-28-10 is trained for 167,000
steps on the benign training data. All models were trained with a batch size
of 128. The two ResNets achieve close to state-of-the-art accuracy [I] on the
CIFAR-10 test set, with Resnet-32 at 92.4% and Resnet-28-10 at 94.4%.

4 Zero-query attacks

In this section, we describe existing methods for generating adversarial examples.
In all of these attacks, the adversary’s perturbation is constrained using the L,
distance.

4.1 Baseline attacks

These baseline black-box attacks which can be carried out without any knowledge
of or query access to the target model.

Random perturbations With no knowledge of f or the training set, the
simplest manner in which an adversary may seek to carry out an attack is by
adding a random perturbation to the input [20/8J6]. These perturbations can be
generated by any distribution of the adversary’s choice and constrained according
to an appropriate norm. If we let P be a distribution over X, and p is a random
variable drawn according to P, then a noisy sample is just Xpise = X + P-
Since random noise is added, it is not possible to generate targeted adversarial
examples in a principled manner. This attack is denoted as Rand. throughout.

Difference of means A perturbation aligned with the difference of means of
two classes is likely to be effective for an adversary hoping to cause misclassi-
fication for a broad range of classifiers [22]. While these perturbations are far
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Table 3. Attack success rates and average distortion for targeted black-box attacks

MNIST ‘ Baseline ‘Gradient Estimation using Finite Diﬂ'erences‘ Transfer from Model B
Single-step Iterative Single-step Iterative
Model D. of M. FD-xent FD-logit IFD-xent IFD-logit | FGS-xent FGS-logit IFGS-xent IFGS-logit
A 15.0 (5.6) | 30.0 (6.0) 29.9 (6.1) 100.0 (4.2) 99.7 (2.7) | 183 (6.3) 18.1 (6.3) 545 (4.6) 465 (4.2)
B 35.5 (5.6) | 29.5 (6.3) 29.3 (6.3) 99.9 (4.1)  98.7 (2.4) - - - -
CIFAR-IO‘ Baseline ‘Gradient Estimation using Finite Differences‘ Transfer from Resnet-28-10

Single-step Iterative Single-step Iterative
Model D. of M. FD-xent FD-logit IFD-xent IFD-logit | FGS-xent FGS-logit IFGS-xent IFGS-logit
Resnet-32 {1.2 (440.3)(23.8 (439.5) 23.0 (437.0) 100.0 (110.9) 100.0 (89.5)|15.8 (439.4) 15.5 (439.4) 71.8 (222.5) 80.3 (242.6)
Resnet-28-10(0.9 (440.3)|29.2 (439.4) 28.0 (436.1) 100.0 (123.2) 100.0 (98.3) - - - -

from optimal for DNNs, they provide a useful baseline to compare against. Ad-
versaries with at least partial access to the training or test sets can carry out
this attack. An adversarial sample generated using this method, and with L.
constraints, is X,qy = X + € - sign(ps — o), where gy is the mean of the target
class and p, is the mean of the original ground truth class. For an untargeted
attack, ¢ = argmin; d(p; — p,), where d(-, ) is an appropriately chosen distance
function. In other words, the class whose mean is closest to the original class in
terms of the Euclidean distance is chosen to be the target. This attack is denoted
as D. of M. throughout.

Effectiveness of baseline attacks In the baseline attacks described above,
the choice of distribution for the random perturbation attack and the choice of
distance function for the difference of means attack are not fixed. Here, we de-
scribe the choices we make for both attacks. The random perturbation p for each
sample (for both MNIST and CIFAR-10) is chosen independently according to a
multivariate normal distribution with mean 0, i.e. p ~ A (0,1;). Then, depend-
ing on the norm constraint, either a signed and scaled version of the random
perturbation (L) or a scaled unit vector in the direction of the perturbation
(Ls) is added. For an untargeted attack utilizing perturbations aligned with the
difference of means, for each sample, the mean of the class closest to the original
class in the Lo distance is determined.

As expected, adversarial examples generated using Rand. do not achieve high
adversarial success rates in spite of having similar or larger average distortion
than the other black-box attacks for both the MNIST and CIFAR-10 models.
However, the D. of M. method is quite effective at higher perturbation values for
the MNIST dataset. Also, for Model B, the D. of M. attack is more effective than
FD-xent. The D. of M. method is less effective in the targeted attack case. Its
success rate is comparable to the targeted transferability based attack for Model
A as well.

The relative effectiveness of the two baseline methods is reversed for the
CIFAR-10 dataset, however, where Rand. outperforms D. of M. considerably as
€ is increased. This indicates that the models trained on MNIST have normal
vectors to decision boundaries which are more aligned with the vectors along the
difference of means as compared to the models on CIFAR-10.
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4.2 Transferability based attacks

Here we describe black-box attacks that assume the adversary has access to a
representative set of training data in order to train a local model. One of the
earliest observations with regards to adversarial examples for neural networks
was that they transfer; i.e, adversarial attack samples generated for one network
are also adversarial for another network. This observation directly led to the
proposal of a black-box attack where an adversary would generate samples for
a local network and transfer these to the target model, which is referred to as
a Transferability based attack. Targeted transferability attacks are carried out
using locally generated targeted white-box adversarial examples.

Single local model. These attacks use a surrogate local model f* to craft
adversarial examples, which are then submitted to f in order to cause misclas-
sification. Most existing black-box attacks are based on transferability from a
single local model [I7J15]. The different attack strategies to generate adversar-
ial instances introduced in Section [I] can be used here to generate adversarial
instances against f*, so as to attack f.

Ensemble of local models. Since it is not clear which local model f* is best
suited for generating adversarial examples that transfer well to the target model
f, Liu et al. [T4] propose the generation of adversarial examples for an ensemble
of local models. This method modifies each of the existing transferability attacks
by substituting a sum over the loss functions in place of the loss from a single
local model.

Concretely, let the ensemble of m local models to be used to generate the
local loss be {f*1,..., f¥"}. The ensemble loss is then computed as lons(x,y) =
Yot ailysi (x,y), where ; is the weight given to each model in the ensem-
ble. The FGS attack in the ensemble setting then becomes x,4y = X + € -
sign(Vxlens(Xx,4)). The Iterative FGS attack is modified similarly. In Table
we can see that Transferability attack (local model ensemble) performs well even
in the targeted attack case, while Transferability attack (single local model) is
usually only effective for untargeted attacks. The intuition is that while one
model’s gradient may not be adversarial for a target model, it is likely that at
least one of the gradient directions from the ensemble represents a direction that
is somewhat adversarial for the target model.

Transferability attack results. For the transferability experiments, we choose
to transfer from Model B for MNIST dataset and from Resnet-28-10 for CIFAR-
10 dataset. Adversarial examples generated using single-step methods and trans-
ferred from Model B to the other models have higher success rates for untargeted
attacks when they are generated using the logit loss as compared to the cross en-
tropy loss as can be seen in Table 2| For iterative adversarial examples, however,
the untargeted attack success rates are roughly the same for both loss functions.
As has been observed before, the adversarial success rate for targeted attacks
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Table 4. Adversarial success rates for transferability-based attacks on Model A
(MNIST) at e = 0.3. Numbers in parentheses beside each entry give the average dis-
tortion A(X, Xaqv) over the test set. This table compares the effectiveness of using a
single local model to generate adversarial examples versus the use of a local ensemble.

‘ Untargeted Transferability to Model A

Single-step Iterative
Source| FGS-xent FGS-logit IFGS-xent IFGS-logit
B 66.3 (6.2) 80.8 (6.3)  89.8 (4.75)  88.5 (4.75)
B,C | 68.1(6.2) 89.8(6.3) 950 (48)  97.1(4.9)
B,C,D| 56.0 (6.3)  88.7 (6.4) 73.5 (5.3) 94.4 (5.3)
‘ Targeted Transferability to Model A

Single-step Iterative
Source|FGS-T (xent) FGS-T (logit) IFGS-T (xent) IFGS-T (logit)
B | 183 (6.3) 181 (6.3) 545 (4.6) 465 (4.2)
B,C | 23.0 (6.3) 23.0 (6.3) 76.7 (4.8) 72.3 (4.5)

B,C,D| 252 (6.4) 251 (6.4) 746 (4.9)  66.1 (4.7)

with transferability is much lower than the untargeted case, even when itera-
tively generated samples are used. On the MNIST dataset, the highest targeted
transferability rate is 54.5% (Table [3]) as compared to 89.8% in the untargeted
case (Table 2).

One attempt to improve the transferability rate is to use an ensemble of
local models, instead of a single one. The results for this on the MNIST data are
presented in Table [ In general, both untargeted and targeted transferability
increase when an ensemble is used. However, the increase is not monotonic in the
number of models used in the ensemble, and we can see that the transferability
rate for IFGS-xent samples falls sharply when Model D is added to the ensemble.
This may be due to it having a very different architecture as compared to the
models, and thus also having very different gradient directions. This highlights
one of the pitfalls of transferability, where it is important to use a local surrogate
model similar to the target model for achieving high attack success rates.

5 Query reduction techniques: analysis and results

5.1 Query reduction using PCA components

A more principled way to reduce the number of queries the adversary has to make
to estimate the gradient is to compute directional derivatives along the principal
components as determined by principal component analysis (PCA) [I8], which
requires the adversary to have access to a set of data which is representative of
the training data. PCA minimizes reconstruction error in terms of the Lo norm;
i.e., it provides a basis in which the Euclidean distance to the original sample
from a sample reconstructed using a subset of the basis vectors is the smallest.
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Algorithm 1 Gradient estimation with query reduction using PCA components
Input: x, k, U, 4, g(+)

Output: Estimated gradient Vxg(x) of g(-) at x

1: for i + 1 to k do

2: Initialize v such that v = i, where u; is the i** column of U

3:  Compute

; g(x+0v) — g(x —dv)
@ (V) - 25 )
which is the two-sided approximation of the directional derivative along v
4:  Update Vxg(x)' = Vxg(x)" ™! + a'(v)v
5: end for
6: Set Vieg(x) = Vig(x)*

Concretely, let the samples the adversary wants to misclassify be column
vectors x* € R for i+ € {1,...,n} and let X be the d x n matrix of centered
data samples (i.e. X = [x'%?...x"], where X = x — L 37" | x7). The principal
components of X are the normalized eigenvectors of its sample covariance matrix
C = XX Since C is a positive semidefinite matrix, there is a decomposition
C = UAUT where U is an orthogonal matrix, A = diag(A1,...,\q), and \; >
... > Aq > 0. Thus, U in Algorithm |I| is the d x d matrix whose columns are
unit eigenvectors of C. The eigenvalue )\; is the variance of X along the 7"
component.

In Algorithm U is the d x d matrix whose columns are the principal
components u;, where ¢ € [d]. The quantity being estimated in Algorithm 1} is
an approximation of the gradient in the PCA basis:

k
u; u;
(Tag) = 3 (Vs ) 2
) ; - [Jasl| /]|

where the term on the left represents an approximation of the true gradient by
the sum of its projection along the top k principal components. In Algorithm [I]
the weights of the representation in the PCA basis are approximated using the

approximate directional derivatives along the principal components.

5.2 Effect of dimension on Gradient Estimation attacks with query
reduction

We consider the effectiveness of Gradient Estimation with random grouping
based query reduction and the logit loss (GE-QR (RG-%, logit)) on Model A on
MNIST data in Figure where £ is the number of indices chosen in each
iteration of Algorithm 1 of the main paper. Thus, as k increases and the number
of groups decreases, we expect adversarial success to decrease as gradients over
larger groups of features are averaged. This is the effect we see in Figure[Tal where
the adversarial success rate drops from 93% to 63% at ¢ = 0.3 as k increases
from 1 to 7. Grouping with k£ = 7 translates to 112 queries per MNIST image,
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down from 784. Thus, in order to achieve high adversarial success rates with the
random grouping method, larger perturbation magnitudes are needed.

On the other hand, the PCA-based approach GE-QR (PCA-k, logit) is much
more effective, as can be seen in Figure Using 100 principal components to
estimate the gradient for Model A on MNIST as in Algorithm [1} the adversarial
success rate at e = 0.3 is 88.09%, as compared to 92.9% without any query
reduction. Similarly, using 400 principal components for Resnet-32 on CIFAR-10
(Figure , an adversarial success rate of 66.9% can be achieved at € = 8. At
€ = 16, the adversarial success rate rises to 80.1%.

Random feature groupings for Model A

100

PCA-based query reduction for Model A
00

PCA-based query reduction for Resnet-32
00
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(a) Gradient Estimation at- (b) Gradient Estimation (c) Gradient Estimation at-

tack with query reduc-
tion using random group-
ing and the logit loss (GE-
QR (RG-k, logit)) on Model
A (MNIST, d = 784). The
adversarial success rate de-
creases as the number of
groups [4] is decreased,
where k is the size of the
group and d is the dimen-
sion of the input.

attack with query reduc-
tion using PCA compo-
nents and the logit loss
(GE-QR (PCA-k, logit)) on
Model A (MNIST, d =
784). The adversarial suc-
cess rates decrease as the
number of principal com-
ponents k used for estima-
tion is decreased. Relatively
high success rates are main-
tained even for k = 50.

tack with query reduc-
tion using PCA components
and the logit loss (GE-QR
(PCA-k, logit)) on Resnet-
32 (CIFAR-10). Relatively
high success rates are main-
tained even for k = 400.

Fig. 1. Adversarial success rates for Gradient Estimation attacks with query
reduction (FD-QR (Technique, logit)) on Model A (MNIST) and Resnet-32
(CIFAR-10), where Technique is either PCA or RG. ‘None’ refers to FD-logit, the
case where the number of queries is 2d, where d is the dimension of the input.

6 Adversarial training: description and further results

Adversarial training [20/8] defends against adversarial examples by generating
them during the training phase and using them during training. The standard
loss function for a neural network f is modified as follows:

g(Xv y) = O‘ef (X’ y) + (1 - a)éf (Xadw y)v (12)
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where y is the true label of the sample x. The underlying objective of this
modification is to make the neural networks more robust by penalizing it during
training to count for adversarial examples. During training, the adversarial ex-
amples are computed with respect to the current state of the network using an
appropriate method such as FGSM.
Ensemble adversarial training. [2I] proposed an extension of the adversarial
training paradigm which is called ensemble adversarial training. As the name
suggests, in ensemble adversarial training, the network is trained with adversarial
examples from multiple networks.

Iterative adversarial training. A further modification of the adversarial train-
ing paradigm proposes training with adversarial examples generated using iter-
ative methods such as the iterative FGSM attack described earlier [16].

Dataset (Model) ‘Benign Adv Adv-Ens Adv-Iter

MNIST (A) 99.2 994 992  99.3
CIFAR-10 (Resnet-32)| 92.4 92.1 91.7  79.1

Table 5. Accuracy of models on the benign test data

For all adversarially trained models, each training batch contains 128 samples
of which 64 are benign and 64 are adversarial examples (either FGSM or iterative
FGSM).This implies that the loss for each is weighted equally during training;
i.e., in Eq. « is set to 0.5. Networks using standard and ensemble adversarial
training are trained for 12 epochs, while those using iterative adversarial training
are trained for 64 epochs.

We train variants of Resnet-32 using adversarial examples with an L., con-
straint of 8. Resnet-32 ,4,.g is trained with FGS samples with the same constraint,
and Resnet-32 cps_adv-g is trained with pre-generated FGS samples from Resnet-32
and Std.-CNN as well as FGS samples. Resnet-32 ,qv-iter-g is trained with iterative
FGS samples using ¢ = 10 and o = 1.0. The adversarial variants of Resnet-32
are trained for 80,000 steps. Table [f] shows the accuracy of these models with
various defenses on benign test data.

6.1 Single-step attacks on defenses

In Figure [2a] we can see that both single-step black-box and white-box attacks
have much lower adversarial success rates on Model A,q4y-0.3 as compared to Model
A. The success rate of the Gradient Estimation attacks matches that of white-
box attacks on these adversarially trained networks as well. To overcome this,
we add an initial random perturbation to samples before using the Gradient
Estimation attack with Finite Differences and the logit loss (FD-logit). These
are then the most effective single step black-box attacks on Model A,qy.0.3 at
e = 0.3 with an adversarial success rate of 32.2%, surpassing the Transferability
attack (single local model) from B.
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Fig. 2. Effectiveness of various single step black-box attacks against adver-
sarially trained models. On the MNIST model, Model A,4v-0.3 the attack with the
highest performance up till ¢ = 0.3 is the Gradient Estimation attack using Finite
Differences with initially added randomness. Beyond this, the Transferability attack
(single local model) using samples from Model B performs better. On the CIFAR-10
model Resnet-32 ,4,.8, the best performing attack is the Transferability attack (single
local model) using samples from Resnet-28-10.

In Figure 2B we again see that the Gradient Estimation attacks using Finite
Differences (FD-xent and FD-logit) and white-box FGS attacks (FGS-xent and
FGS-logit) against Resnet-32. As e is increased, the attacks that perform the
best are Random Perturbations (Rand.), Difference-of-means (D. of M.), and
Transferability attack (single local model) from Resnet-28-10 with the latter
performing slightly better than the baseline attacks. This is due to the ‘gradient
masking’ phenomenon and can be overcome by adding random perturbations
as for MNIST. An interesting effect is observed at € = 4, where the adversarial
success rate is higher than at ¢ = 8. The likely explanation for this effect is
that the model has overfitted to adversarial examples at ¢ = 8. Our Gradient
Estimation attack closely tracks the adversarial success rate of white-box attacks
in this setting as well.

Increasing effectiveness of single-step attacks using initial random per-
turbation. Since the Gradient Estimation attack with Finite Differences (FD-
xent and FD-logit) were not performing well due the masking of gradients at
the benign sample x, we added an initial random perturbation to escape this
low-gradient region as in the RAND-FGSM attack [2I]. Figure [3[shows the effect
of adding an initial L..-constrained perturbation of magnitude 0.05. With the
addition of a random perturbation, FD-logit has a much improved adversarial
success rate on Model A,4y-0.3, going up to 32.2% from 2.8% without the pertur-
bation at a total perturbation value of 0.3. It even outperforms the white-box
FGS (FGS-logit) with the same random perturbation added. This effect is also
observed for Model A,gv-ens-0.3, but Model A,gv.iter-0.3 appears to be resistant to
single-step gradient based attacks. Thus, our attacks work well for single-step
attacks on DNNs with standard and ensemble adversarial training, and achieve
performance levels close to that of white-box attacks.
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Finite-difference vs RAND-FGSM for Model A variants
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Fig. 3. Increasing the effectiveness of FD-logit attacks on Models A.4v.03,
Asdv-ens-0.3 and Aggviter-0.3 (MNIST) by adding an initial L., constrained ran-
dom perturbation of magnitude 0.01.

6.2 Targeted attack results

In Table[6] the attack success rate and distortion levels for targeted attacks on
adversarially trained models are given. We see that Gradient Estimation match
the attack success rates and distortion levels of white-box attacks.

Table 6. Targeted black-box attacks for models with adversarial training: attack
success rates and average distortion A(X,Xaqv). Top: MNIST, ¢ = 0.3. Bottom:
CIFAR-10, € = 8.

Dataset ‘ White-box ‘ Gradient Estimation (FD) ‘Gradient Estimation (Query Reduction)
MNIST

Single-step  Iterative |Single-step [1568] Iterative [62720]| Single-step [~ 200] Iterative [8000]

Models | FGS (logit) IFGS (logit)|  FD-logit IFD-logit | PCA-100 RG-8 PCA-100  RG-8
Asdveos 16 (6.1) 484 (3.9) 1.7 (6.0) 478 (36) | 0.8(5.9) 0.7 (5.4) 139 (4.8) 4.3 (2.7)
Audv-ens.0.3 0.9 (6.3) 61.0 (3.7) 0.9 (6.3) 63.0 (3.7) | 0.6 (6.0) 0.4 (6.4) 17.0(4.4) 10.0 (2.3)
Andv-iter0.3 13 (75) 2.0 (3.8) 1.3 (6.5) 20(34) | 04(60) 01(7.1) 20(44) 1.0 (22)
CIFAR-10 |Single-step Iterative |Single-step [6144] Iterative [61440]| Single-step [~ 800] Tterative [~ 8000]
Models | FGS (logit) IFGS (logit)|  FD-logit IFD-logit | PCA-400 RG-8 PCA-400  RG-8

Resnet-32 ,4y-8
Resnet-32 ,dy-ens-8
Resnet-32 adv-iter-s

1.0 (435.2) 99.0 (122.2)
1.4 (435.2) 95.0 (131.5)
12.4 (430.4) 18.1 (378.5)

1.2 (441.5) 99.5 (123.4)
1.6 (437.8) 95.7 (134.3)
125 (431.2)  18.3 (379.4)

0.8 (462.2) 0.9 (465.5) 78.2 (147.3) 75.0 (143.1)
0.9 (438.3) 1.0 (439.4) 61.3 (153.8) 62.2 (150.7)
3.1 (436.7) 2.9 (439.3) 4.1 (216.4) 4.0 (215.3)

7 Countermeasures results

The main countermeasure to our attack that we consider is rounding the prob-
abilities output by a classifier to a smaller number of decimal places. We note
that no MLaaS provider we are aware of uses this countermeasure, and that this
method could severely inhibit usability for legitimate users wishing to carry out
any post-processing of the output probabilities.
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When the output probabilities are rounded down to 2 decimal places, the Gra-
dient Estimation attack with Finite Differences on MNIST, using the logit loss
(FD-logit) is unable to generate adversarial examples for 6 = 0.01 and achieves
an attack success rate of 7% with a distortion of 0.55 with § = 1.0. In compari-
son, FD-xent achieves 11% attack success with a distortion of 0.85 with ¢ = 1.0.
Using the Gradient Estimation attack with query reduction (GE-QR (RG-%,
xent)), an attack success rate of 19% can be achieved, using a group size of 100
and § = 1.0. Similarly, for IGE-QR (RG-k, xent), an attack success rate of 28%
can be achieved with a group size of 100. For CIFAR-10 as well, we find the
cross-entropy loss based attack to perform better with this countermeasure.

The overall takeaway is that due to the countermeasure, if the images used
to estimate the loss are too close to one another, as is the case with a small value
of 9, it is not possible to find adversarial examples reliably. However, non-trivial
attack success rates can be achieved with larger § and larger groups.

8 Comparison with previous work

As already stated in the main paper, compared to the ZOO attack of Chen
et al. [4], our attack uses 192x fewer queries for MNIST and 67x fewer for
CIFAR-10 to achieve similar success rates at almost identical distortion levels.
This is shown in Table [} We now discuss the impact this has on the time
taken for the attacks to run. For iterative attacks with no query reduction, with
40 iterations per sample (« set to 0.01), both IFD-xent and IFD-xent-T taking
about 2.4 seconds per sample. Similarly, IFD-logit and IFD-logit-T take about
3.5 seconds per sample. With query reduction, using IGE-QR (PCA-E, logit)
with & = 100 and IGE-QR (RG-k, logit) with k = 8, the time taken is just 0.5
seconds per sample. In contrast, the fastest attack from [4], the ZOO-ADAM
attack, takes around 80 seconds per sample for MNIST, which is 24x slower
than the Iterative Finite Difference attacks and around 160x slower than the
Iterative Gradient Estimation attacks with query reduction. For Resnet-32 on the
CIFAR-10 dataset, FD-xent, FD-xent-T, FD-logit and FD-logit-T all take roughly
3s per sample. The iterative variants of these attacks with 10 iterations (« set to
1.0) take roughly 30s per sample. Using query reduction, both IGE-QR (PCA-k,
logit) with k£ = 100 with 10 iterations takes just 5s per sample. The time required
per sample increases with the complexity of the network, which is observed even
for white-box attacks. For the CIFAR-10 dataset, the fastest attack from [4]
takes about 206 seconds per sample, which is 7x slower than the Iterative Finite
Difference attacks and around 40x slower than the Iterative Gradient Estimation
attacks with query reduction. We further note that while we use state-of-the-art
classifiers on CIFAR-10, achieving classification accuracies in excess of 90%, the
classifiers used by Chen et. al. only achieve accuracies around 80%.

Comparing our attack to that of Brendel et al., we note that their attack
takes up to 1.2 x 10% queries to converge to an adversarial example. Further, we
demonstrate attacks using as few as 192 queries to a real-world target model on a
256x256 pixel image with a perturbation magnitude of 1.8 x 10~ in the distortion



16 A.N. Bhagoji, W. He, B. Li and D. Song

metric (squared L2 distance, normalized by resolution) used by Brendel et al.
[2]. In comparison, in Figure 4 in Brendel et al. [2], 1229 queries are required
to find an adversarial example for a locally-held model (not a real-world model)
with a perturbation of 2.1 x 10~2 for an image of roughly the same resolution.

Table 7. Comparison of attack success (AS) and distortion (dist.) for Gradient Esti-
mation (¢ = 0.3) and ZOO attacks on Model A on MNIST.

Attack Type ‘Untargeted‘ Targeted ‘ Attack efficiency
Query-based attack | AS (Dist.) |AS (Dist.) | Queries Avg. Time (s)
Finite Diff. 92.9 (6.1) [29.9 (6.1) | 1568 8.8 x 1072
Gradient Estimation (RG-8) | 61.5 (6.0) | 15.9 (5.9 196 1.1x 1072
lter. Finite Diff. 100.0 (2.1) | 99.7 (2.7) | 62720 3.5
Iter. Gradient Estimation (RG-8)| 98.4 (1.9) | 73.8 (2.5) | 8000 0.43
Z0O 100.0 (1.5) [100.0 (2.1){7.7 x 10° 55.4

9 Experiments on Clarifiai, a real-world system

In this section, we present the complete set of images we experimented with
to attack the Not Suitable For Work (NSFW) and Content Moderation models
hosted by Clarifai [5].

This section contains images that some viewers may find offensive or dis-
turbing. These are used purely for research purposes and we apologize for any
discomfort caused.

Many of the original images are larger and have been scaled down for presen-
tation purposes. All the images we use have usage rights ‘Labeled for noncom-
mercial reuse with modification’. The adversarial examples of ‘drugs’ in Table
were generated using 197 queries to the target model while the adversarial
images of ‘gore’ needed 110 and 220 queries each (top to bottom).

The adversarial images in Table [0] needed 810, 1150, 1600 ,1400 and 810
queries respectively, from top to bottom.

9.1 Quantitative attack results against Clarifai:

We have conducted additional experiments to show quantitative results for at-
tack success rate against Clarifai’s NSFW model.

Our methodology was as follows. To come up with a representative sample of
NSFW images, we collected public images form the Internet that were indexed
with terms such as ‘erotic.” We then selected 30 images similar to the default
images provided by Clarifiai which were likely to be classified as ‘NSFW’ by the
model. For large images, we downsampled them to a size suitable for embedding
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in a discussion forum. The authors clearly identified all of these as NSFW. The
model classified 21 of the images as ‘NSFW.’

We then carried out our Iterative Gradient Estimation attack on the NSFW
model and our sample of 21 correctly classified images using Random Group-
ing as the query reduction method. For our initial set of parameters, we set
the perturbation parameter € to 16, the random group size to 10,000, the esti-
mation parameter § to 1.0 and the number of iterations to 5. With this choice
of parameters, our attack caused 16 of the 21 images to be misclassified as
‘SFW’, an attack success rate of 76.2%. We then modified the parameters by
decreasing the group size and increasing the number of iterations in order to
misclassify the 5 remaining images. With these changes, the attack success rate
was 20 of 21 or 95.2%. The average number of queries needed for each im-
age over all successful attacks was 228. The full set of images can be found at
https://sunblaze-ucb.github.io/blackbox-attacks/.
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Table 8. Benign and targeted adversarial images of drugs and gore. All classification
results are from the ‘Content Moderation’ model hosted by Clarifai.

Benign image Classification ‘ Adversarial image Classification
‘drugs’, ‘safe’,
confidence = confidence =
1.0 0.78
‘drugs’, ‘explicit’,
confidence = confidence =
0.59 0.53
‘drugs’, ‘safe’,
confidence = confidence =
0.99 0.55
‘drugs’, ‘safe’,
confidence = confidence =
0.99 0.77
‘drugs’, ‘safe’,
confidence = confidence =
1.0 0.76
‘drugs’, ‘safe’,
confidence = confidence =
1.0 0.67
‘gore’, ‘safe’,
confidence = confidence =
1.0 0.69
‘gore’, ‘safe’,
confidence = confidence =
1.0 0.55
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Table 9. Benign and targeted adversarial images of suggestive and NSFW images. The
top two images are classified using the ‘Content Moderation’ model while the bottom
three images are classified using the 'NSFW’ model.

Benign image Classification ‘ Adversarial image Classification
‘suggestive’, ‘safe’,
confidence = confidence =

0.72 0.58
‘suggestive’, ‘safe’,
confidence = confidence =
0.99 0.79
‘nsfw’, ‘safe’,
confidence = confidence =
0.76 0.55
‘nsfw’, ‘stw’,
confidence = confidence =
0.88 0.56
Qf 3 f ) ‘ ‘f 3 f )
nsfw’, = sfw’,
W confidence = ! \&/ confidence =
LA L
i Ji 0.85 ‘ i i\ 0.64
}m Pn i | ,w‘
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