Thoughts on Research

Disclaimer: Research is a very personal endeavor and there is no 'right' way to do it

Research Project Lifecycle

- Idea strikes you, one of 3 things happens (or you join existing project!)
 - Oh no, someone has done the exact same thing, pivot!
 - Way too broad
 - Way to narrow
- Scope for time and effort
- Very hard *a priori*, usually happens when you actually try to work on the idea While paper!=READY:
- Results and Analysis Phase
 - 'Scientist-in-the-sky' time, platonic ideal of 'doing research'
- Write, edit, write
 - We don't get trained for this

Project Start: You're leading

- Sanity check the idea with as many people as possible
 - Hallway conversations, quick zoom meetings
 - It can be uncomfortable and potentially discouraging, but helps quick refinement

Set up a project management tool

- Document ideas and progress
- Commit code early and often
- Try to work out a high-level pitch
 - Why are you working on this?
 - Who will care?
 - Why do you enjoy it?

Project Start: You're joining

- Learn as much as possible about the project!
 - Read existing documentation and previous work
 - Don't think of yourself as just doing chores on it
 - Interrogate the premises of the project
- Being a good collaborator
 - Try to share new directions for the project
 - Coding: can you help standardize the codebase?
 - Experiments: Are there missing components wrt datasets, models, setups?
 - Analysis: Summarizing and interpreting results from (somewhat) of an outsider's perspective

Scoping a project

- Too vague
 - 'I will use ML to detect anomalies'
- Too specific
 - 'I will use Isolation Forests to detect the addition of a new device to a 4 device topology using network flows'
- Too ambitious
 - 'I will develop a new general-purpose algorithm to analyze different types of streaming network data at enterprise scale'
- Too unambitious
 - 'I will implement an existing algorithm to analyze streaming network data on a local setup'

Results and Analysis

- Why are you doing the current experiment?
 - Have a clear hypothesis
 - If it succeeds, is there a more challenging setting you should try?
 - If it fails, why and what next?
- Reproducibility
 - Save experiment conditions!
 - Have scripts to recreate results
 - Repeat experiment multiple times
- Interpreting results
 - Don't assume results support your agenda

Write, edit, write

Writing

- Don't edit during writing
- Put down a structure for each section, i.e. what function is served by each paragraph?
- Keep the overall story of the paper in mind, remind readers frequently why they need to read this
- Disconnect from the internet

Editing

- **Self**: Edit the next day, interrogate each sentence for intent and redundancy
- Others: Be gentle and constructive, don't focus on grammar in first few passes, focus on preserving intent (if possible) while shrinking/expanding
- Practical: use colored text when suggesting alternatives, retain edit history