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Lecturer: Arjun Bhagoji Scribe: Akshaj Aithal, Rahul Kumar Yadav

2.1 Efficient learning with convexity

Since, we know that for the non-convex 0-1 loss efficient learning is not possible, as its minimiza-
tion is NP-hard(from Feldman et al 2012). Hence, to enable tractable optimization, surrogate
losses (e.g., hinge, logistic), are used, which can be minimized efficiently. We know that, the
surrogate loss needs to be classification-calibrated or consistent with 0-1 loss, as in that case,
we can be sure that minimizing surrogate loss aligns with minimizing the 0-1 risk. Now, we
need to ask under what conditions on the surrogate loss & hypothesis class is efficient learning
possible?

2.1.1 Convexity

1. H must be a convex set ⇒ ∀h, h′, αh+ (1− α)h′ ∈ H.

2. l(h, z) must be a convex function in h ⇒ ∀z, l(αh+(1−α)h′, z) ≤ αl(h, z)+(1−α)l(h′, z)

Note: Implicitly treating H ⊂ Rd & h ∈ Rd

2.1.2 Boundedness

Our hypothesis class H needs to be bounded, which can be mathematically stated as ∀h ∈ H, ||h||2 ≤ B,
i,e. every element h in the hypothesis class H has bounded norm.

2.1.3 Lipschitzness

Let l : Z × H → R be a loss function, where z ∈ Z is a data point and h ∈ H is a hypothesis. We say
that l is ρ-Lipschitz in h, uniformly in z, if

|l(z, h)− l(z, h′)| ≤ ρ ∥h− h′∥, ∀h, h′ ∈ H, ∀z ∈ Z.

In other words, for every data point z, l(z, h) defines a loss curve that is Lipschitz continuous with
the same constant ρ for all z. The uniformity over z ensures that the Lipschitz constant does not depend
on the particular choice of z.

If l(z, h) is differentiable in h, then the Lipschitz condition is equivalently satisfied whenever

∥∇hl(z, h)∥ ≤ ρ, ∀h ∈ H, ∀z ∈ Z.

• The definition of Lipschitz continuity does not require differentiability. The gradient condition is
only a sufficient characterization when l is differentiable in h.

• The gradient must be taken with respect to h, not z, since Lipschitzness is being defined in terms
of the hypothesis variable.

• Bounded gradients guarantee Lipschitz continuity, but the converse is not always true: a function
can be Lipschitz continuous without being differentiable everywhere (e.g., the hinge loss).
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2.1.4 Smoothness

We say a function l to be smooth if,

∀z, h, h′||∇l(z, h)−∇l(z, h′)|| ≤ β||h− h′||

where {z, h} and {z, h′} ∈ the domain of function l, and β is some constant.

With convex sets that satisfy 2.1.1, 2.1.2 & 2.1.3, or 2.1.1, 2.1.2 & 2.1.4 we get problems that
are learnable and usually efficient.
Note: There exist convex learning problems that satisfy 2.1.1, 2.1.2 & 2.1.3 that are not efficiently
learnable. See 12.6.4 in [1].

2.2 Optimizing over Vector Spaces

Let θ⃗ ∈ Rd and let f : H → R. We want to minimize f(θ⃗) over

H =
{
θ⃗ ∈ Rd : ∥θ⃗∥2 ≤ B

}
.

Additionally, assume that f is convex and L-Lipschitz; for simplicity, also assume that f is differentiable.

Note: Convex functions always admit subgradients but need not be differentiable everywhere. We gloss
over this for simplicity.

2.2.1 Subgradient Lemma

Lemma: Let H ⊆ Rd be a convex set and f : H → R be a convex function. Then, for any θ⃗1, θ⃗2 ∈ H
and any subgradient g ∈ ∂f(θ⃗2), we have

f(θ⃗1)− f(θ⃗2) ≥ g⊤
(
θ⃗1 − θ⃗2

)
.

• θ⃗1, θ⃗2 ∈ H are two points in the domain of f .

• f : H → R is a convex function.

• g ∈ ∂f(θ⃗2) is a subgradient of f at θ⃗2 (i.e., g satisfies the subgradient inequality above).

If f is differentiable at θ⃗2, then the subdifferential ∂f(θ⃗2) is the singleton {∇f(θ⃗2)}, and the lemma
becomes:

f(θ⃗1)− f(θ⃗2) ≥ ∇f(θ⃗2)
⊤(θ⃗1 − θ⃗2

)
.

The key question arises is how do we optimize a convex-bounded Lipschitz function?

2.2.2 Projection Lemma

Let H ⊆ Rd be a nonempty, closed, convex set, and let

ΠH(x) := argmin
y∈H

∥x− y∥2

denote the Euclidean projection of x onto H. Then, for any ω ∈ Rd and any θ ∈ H, we have

∥θ −ΠH(ω)∥22 + ∥ω −ΠH(ω)∥22 ≤ ∥ω − θ∥22.

, which for our figure becomes

||⃗a||2 + ||⃗b||2 ≤ ||ω − θ||2

This inequality expresses the Pythagorean property of Euclidean projection: the projection point
ΠH(ω) is the closest point in H to ω.
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Figure 1: Projection Lemma

2.2.3 Projected Gradient Descent

Projected Gradient Descent (PGD) is an iterative optimization method for constrained problems of the
form

min
θ⃗∈H

f(θ⃗),

where H ⊆ Rd is a convex feasible set. Starting from an initial point θ⃗0 ∈ H, the update rule is

ω⃗t+1 = θ⃗t − η∇f(θ⃗t),

θ⃗t+1 = ΠH

(
ω⃗t+1

)
,

where η > 0 is the step size and ΠH(·) denotes the Euclidean projection onto H, defined as

ΠH(x⃗) = argmin
y⃗∈H

∥y⃗ − x⃗∥2.

The projection step ensures that θ⃗t+1 remains in H by projecting any infeasible point ω⃗t+1 /∈ H back to
the closest point in H in terms of Euclidean distance.

Theorem 2.1. Using η = B
ρ
√
T
, where ρ is the Lipschitz constant of f and θ⃗∗ its minimizer in H, we

have

f

(
1

T

T∑
t=1

θ⃗t

)
− f(θ⃗∗) ≤ Bρ√

T
.

Proof. Subgradient lemma at θt. By convexity (subgradient inequality with gt = ∇f(θt) ∈ ∂f(θt)),

f(θt)− f(θ∗) ≤ g⊤t (θt − θ∗).

Three-point identity. Using the elementary identity

2a⊤b = ∥a∥22 + ∥b∥22 − ∥a− b∥22

with a = θt − θ∗ and b = θt − ωt+1 = ηgt, we get

g⊤t (θt − θ∗) =
1

2η

(
∥θt − θ∗∥22 − ∥ωt+1 − θ∗∥22

)
+

η

2
∥gt∥22.

Nonexpansiveness of projection. Since Euclidean projection is nonexpansive and θ∗ ∈ H,
∥ωt+1 − θ∗∥2 ≥ ∥θt+1 − θ∗∥2. Hence

f(θt)− f(θ∗) ≤ 1

2η

(
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

)
+

η

2
∥gt∥22.

Sum and telescope.
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Summing t = 1 to T , applying the telescoping identity

T∑
t=1

(
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

)
= ∥θ1 − θ∗∥22 − ∥θT+1 − θ∗∥22,

and using ∥gt∥2 ≤ ρ together with the fact that −∥θT+1 − θ∗∥22 ≤ 0, thus, ∥θ1 − θ∗∥22 − ∥θT+1 − θ∗∥22 ≤
∥θ1 − θ∗∥22, we obtain

T∑
t=1

(
f(θt)− f(θ∗)

)
≤ ∥θ1 − θ∗∥22

2η
+

ηρ2T

2
.

Average and choose η. By convexity of f , f
(

1
T

∑T
t=1 θt

)
≤ 1

T

∑T
t=1 f(θt). Divide the previous

inequality by T and take η = B
ρ
√
T
:

f

(
1

T

T∑
t=1

θt

)
− f(θ∗) ≤ B2

2ηT
+

ηρ2

2
=

Bρ

2
√
T

+
Bρ

2
√
T

=
Bρ√
T
.

Note:The rate is dimension independent!
The key question which now arises is how we can use gradient descent for learning?

2.3 Learning with Gradient Descent

Option 1:

f(θ⃗) =
1

n

n∑
i=1

l(z⃗i, θ⃗) = L̂(θ⃗)

Option 2:

f(θ⃗) = Ez⃗∼p∗

[
l(z⃗, θ⃗)

]
= L(θ⃗)

In Option 2, we do not have access to the full distribution, so we use (fresh) random samples.

2.3.1 Stochastic Gradient Descent

In SGD, we don’t do gradient descent over all of the dataset, rather we use only
some datapoints for the process of updation. Typically, when the number of datapoints, z∗ = 1, then

it is termed as Stochastic Gradient Descent, else it is called mini-batch gradient descent. When batch
size equals 1, then For t = 1, . . . , T , sample z⃗t ∼ p∗.

Then,
ω⃗t+1 = θ⃗t − η∇θl(z⃗t, θ⃗t),

θ⃗t+1 = ΠH(ω⃗t+1).

Similarly, in the case of mini-batched gradient descent to update, we take average of gradient over
all the data points sampled equaling the batch size for that time t, At iteration t, sample a mini-batch
Bt of size m. The update rule is given by

θt+1 = θt − η · 1

m

∑
i∈Bt

∇θ l(zi, θt),

We can apply projection rule as above, if needed.

Theorem 2.2. If η = B
ρ
√
T
, then

E{z⃗t}T
t=1

[
L

(
1

T

T∑
t=1

θ⃗t

)]
− L(θ⃗∗) ≤ Bρ√

T
.
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Note: This is effectively a new learning paradigm, but it needs fresh samples at each step. Otherwise,
the underlying assumption that the stochastic gradient is an unbiased estimator of the loss does not
hold.

In Option 1, we can make as many passes over the data as we wish. (Why is this true?)

2.4 Vacuous Bounds in Statistical Learning Theory

In classical Statistical Learning Theory (SLT), the fundamental theorem of statistical learning states that
to guarantee generalization within error ε with high probability, it suffices to have

m ≳
log |H|
ε2

,

where m is the number of training samples and H is the hypothesis class.

A High-Dimensional Example

Let θ⃗ ∈ Rd, and assume each coordinate is represented with 32 bits. Then the number of possible
parameter configurations is

|H| =
(
232
)d

.

Taking logarithms,
log |H| = 32 d.

The sample complexity bound becomes

m ≳
32 d

ε2
.

For large d (as in modern deep networks), this bound predicts an astronomically large m, often much
larger than what is available in practice.

Why the Bound is Vacuous

In modern machine learning the number of training samples needed to get low test error is much smaller
than that predicted by the fundamental theorem of statistical learning, thus, the bound on number of
samples is of not much help to us! Thus, we need new theoretical approaches to understand how learning
happens in the case of neural networks.

2.4.1 Double Descent

Figure 2: Double descent: test risk (solid) and training risk (dashed) as model capacity increases.

The double descent phenomenon describes a relationship between model complexity and generaliza-
tion error. In the classical case, there is something called as bias–variance tradeoff in which test error
decreases as complexity of the model increases until it reaches an optimal point, after which it starts to
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increase due to overfitting. However, a newer kind of phenomenon in modern overparameterized mod-
els (e.g., deep neural networks) is observed, in which, increasing complexity beyond the interpolation
threshold, where the model fits the training data exactly can lead to a second regime where test error
decreases again.

2.5 Unsupervised Learning & Anomaly Detection

Much of the material in this section is adapted from the survey namely A Unifying Review of Deep and
Shallow Anomaly Detection by Lukas Ruff et al., which provides a comprehensive review of deep and
shallow anomaly detection methods.

2.5.1 Assumptions in Traditional Supervised Learning

1. Labeled data available: training examples (xi, yi) are provided.

2. Train–test i.i.d.: both sets are drawn from the same distribution

(x, y) ∼ Ptrain = Ptest.

Remark: When the second assumption fails, we study distributionally robust optimization and
domain adaptation to handle covariate shift, concept drift, label shift, etc..

2.5.2 Unsupervised Learning

We observe unlabeled samples

{xi}ni=1
i.i.d.∼ P+ on X ,

and no labels are provided.

2.5.3 Anomaly Detection

Basic problem: Given a new point x̃, decide whether it is in-distribution (i.e., typical of P+). If
P+ has a probability density function, then we chose a threshold τ ≥ 0 and define the anomaly set as

A := {x ∈ X : p+(x) ≤ τ}.

Challenges:

1. Modeling P+ is hard. Misspecification leads to errors:

FPR = Pr
x∼P+

[ŷ(x) = anomaly], FNR = Pr
x∼P anom

[ŷ(x) = normal].

High complexity of P+ can cause either large FPR (typical x ∼ P+ wrongly flagged) or large FNR
(true anomalies missed).

2. Anomalies may come from arbitrary, heterogeneous distributions {P i} (one or many) and are rare.

Model of Normality: Since we have samples from P+, we try to model normality directly and
treat all training examples as label 1 (normal).

2.5.4 Notes on terminology and assumptions

The terms anomaly, novelty, and outlier are used differently across fields:

• Anomaly: out-of-support/semantically different (e.g., a dog when P+ is cats).

• Outlier: a rare/extreme point from P+ (e.g., a rare breed of cat far in the tail).

• Novelty: previously unseen but related subpopulation.(e.g., a new cat breed).

2-6



DS603 Lecture 2 – 01/08/2025 Autumn 2025

Contamination

1. Question. How do we know all observed examples truly come from P+? What if there is noise
or corruption?

2. More general model (Huber ε-contamination).

xi ∼ (1− ε)P+ + εQ + noise, 0 ≤ ε < 1,

where Q is an arbitrary (adversarial or unknown) distribution.

Other Unsupervised Learning Methods Below are some methods which we can use to look
for the anomalies:-

1. Clustering: k-means.

2. Reconstruction-based: PCA, Autoencoders.
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