
DS603: Robust Machine Learning Autumn 2025

Lecture 1 – 30/07/2025

Lecturer: Arjun Bhagoji Scribe: Rahul Kumar Yadav

1.1 What is Machine Learning?

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”, as given in the book Machine Learning by Tom M. Mitchell.

1.1.1 Some Machine Learning Uses in Modern Times-

1. Using AI for surveillance.

2. Content Moderation using AI.

3. In cybersecurity(Darktrace uses AI to respond to hacks accordingly).

4. Financial Transactions(MasterCard using AI to improve the approval rate of genuine
transactions)

1.2 Safety Risks(Machine Learning is prone to failure)

Machine Learning models have been seen to have various problematic features, depending on
how they have been trained. Some of them are:-

1. Making unfair decisions.

2. They can leak private data.

3. Training of deep learning models, especially the modern LLM ones consume humongous
amount of compute and electricity, resulting in large amount of carbon emmissions.

4. They can be fooled and thus can be taken advantage of. For e.g.:- Using LLMs to get
information on how to create explosives, etc.

1.3 General idea behind adversarial examples

Losely speaking, examples or samples are said to be adversarial(whose main goal is to fool the
machine learning model), by making the model to misclassify the example into something which
it isn’t according to human perception. For e.g.: Dogs being classified as cats by just inducing
a small perturbation in the image of dog, which is largely not visible to humans, and humans
are not susceptible to these.

A general way of creating the adversarial samples is to perturb the samples in such a manner,
which can change the label predicted by the machine learning model associated with the original
samples. There are various kinds of attacks associated with how to generate adversarial samples
for e.g.: Fast Gradient Sign Method(FGSM), Projected Gradient Descent(PGD), are some of
the common ones.
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To counteract it or to make our models robust, we do adversarial training in which we
make our model learn those perturbations by keeping the labels same as the original one, i.e. if
our original sample and labels were (x, y), then in the case of adversarial learning our samples
become the perturbed samples we get from the original samples, while keeping the labels same.
(x+ δ, y). More formal discussions would follow in the upcoming lectures.

1.4 Robustness, Privacy, and Fairness: A Primer

We want to:

• Understand when and how ML models fail

• Reason about rigorous limits on robustness, privacy, and fairness

• Build more reliable ML systems

Robustness

• Anomalies & noise: How do models behave under out-of-distribution inputs or corrupted
labels?

• Training-time attacks: Poisoning a small fraction of the training set to induce large errors
at test time.

• Test-time (adversarial) attacks: Adding tiny, humanely imperceptible perturbations to
inputs that lead to misclassifications.

• Defenses: Adversarial training, robust statistics, data sanitization.

Privacy

• Membership inference: Can an adversary tell if a given example was in the training set?

• Model & data reconstruction: Recovering sensitive attributes or exact training records
from model access.

• Differential privacy: Training algorithms that provably bound the information leaked
about any single example.

• Secure computation: Techniques to train models on distributed, private datasets without
revealing raw data.

Fairness

• Bias across subpopulations: Ensuring similar error rates for different demographic groups
(e.g. gender, ethnicity).

• Bias amplification: Preventing models from exaggerating existing societal disparities.

• Fair representation learning: Learning features that hide protected attributes.

• Explainable decisions: Providing understandable reasons for individual predictions to de-
tect and correct unfair behaviors.
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1.5 Supervised Learning Formalism (Batch)

In supervised machine learning, essentially we train our model to minimise the empirical
loss(minimise the loss function which is generated from the samples we have, formalised be-
low) in order to find the hypothesis which minimises the training loss, and then determining
the test loss for the corresponding hypothesis to check how good our learned model generalizes,
if it is good, then we should(hopefully) observe good test accuracy(meaning predicted labels
are actually equal to the true labels). The loss function can take various forms depending upon
the context like whether our learning is distributed or centralized, whether it is a classification
problem, or regression problem, etc.

Let Z = {(xi, yi)}ni=1, where xi ∈ X , yi ∈ Y are the training data.
Example: X = Rd, Y = {−1,+1}.

Let H be a hypothesis class of functions h : X → Y.
Example: H = {sign(θ⊤x) | θ ∈ Rd}.

Let ℓ : (X × Y)×H → R be a loss function.
Example: ℓ

(
(x, y), h

)
= 1{y ̸= h(x)}.

Sometimes we write z = (x, y) ∈ Z for shorthand.

Let P ∗ be the underlying probability distribution over Z = X ×Y. Strictly speaking, P ∗ is
defined on a sigma-field F of subsets of Z satisfying:

1. ∅ ∈ F ,

2. if A1, A2, · · · ∈ F then
⋃

iAi ∈ F ,

3. if A ∈ F then Ac ∈ F .

Then (Z,F , P ∗) forms a probability space.
Example: If Z = R then F may be the Borel σ-field (generated by all open intervals), and
P ∗ : F → [0, 1] satisfies:

• P ∗(∅) = 0,

• P ∗(Z) = 1,

• for disjoint Ai ∈ F , P ∗(
⋃

iAi) =
∑

i P
∗(Ai).

1.6 Expected Risk

So, expected risk is the expected value of loss function(ℓ : (X × Y) ×H) when each sample is
drawn from the underlying probability distribution P ∗, which we usually don’t know in most
of the cases. Therefore, we use empirical risk as a proxy, which we get from the data points
which we have for training. The hypothesis which minimises this expected risk is our expected
risk minimiser. Formally,

L(h) = Ez∼P ∗
[
ℓ(z, h)

]
= E(x,y)∼P ∗

[
ℓ((x, y), h)

]
=

∫
Z
ℓ
(
(x, y), h

)
dP ∗(x, y).

Note: In practice we do not know P ∗, so we approximate L(h) by computing the test error on
held-out examples.
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Let
h∗ = argmin

h∈H
L(h)

be the expected risk minimizer. Then L(h∗) is the lowest possible expected risk.

Question Is L(h∗) always 0? It is not always 0, as bayes predictor(it is the function or ideal
hypothesis h∗(x) = argminy′ E

[
ℓ(Y, y′)

∣∣X = x
]
that achieves the minimum possible expected

loss for the data distribution. ) is the expected risk minimizer, and it is not necessarily zero,
in the case of non-determinism arising from the noise.

1.7 Empirical Risk (Training Error)

Definition (Empirical Risk):

L̂(h) =
1

n

n∑
i=1

ℓ
(
(xi, yi), h

)
.

Let
ĥ = argmin

h∈H
L̂(h)

be the empirical risk minimizer.

Question Which of ĥ, h∗, L(h), and L̂(h) are random variables?

The random variables are ĥ and L̂(h). The fixed quantities (non-random) are h∗ and L(h).
The key distinction between the two is whether the quantity depends on the specific, randomly
drawn training dataset (S) or on the entire, fixed true data distribution (D).

• Random Variables (Depend on the Training Set S):

– ĥ (Empirical Risk Minimizer): This is the hypothesis that performs best on our
specific training set. If we were to draw a different random training set, we would
likely get a different ĥ. Therefore, its outcome depends on the random sample.

– L̂(h) (Empirical Risk): This is the average loss of a given hypothesis h calculated on
our specific training set. Since its value is computed directly from the random data
points in our sample, a different sample would yield a different empirical risk for the
same hypothesis.

• Fixed Quantities (Depend on the True Distribution D):

– h∗ (True Risk Minimizer): This is the single best, ideal hypothesis that minimizes
the risk over the entire, true data distribution. It is a fixed, theoretical target that
does not change regardless of what random sample we draw.

– L(h) (True Risk): This is the expected loss of a given hypothesis h over the entire,
true data distribution. For any specific hypothesis h, its true risk is a single, fixed
number representing its ”true” performance.

1.8 Excess Risk and PAC (Probably Approximately Correct)
Learning

The key question we want to answer is: Why does minimizing the training error (empirical risk)
lead to a reduction in the test error (expected risk)? Formally, we are interested in the excess
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risk, which is the gap between the true risk of our learned hypothesis and the true risk of the
best possible hypothesis: |L(ĥ)− L(h∗)|.

We want to find a probabilistic bound on this excess risk. We want to be able to make a
statement of the form:

P
[
|L(ĥ)− L(h∗)| > ε

]
≤ δ

Here, ε is the accuracy parameter (the excess risk we are willing to tolerate), and δ is the
confidence parameter (our probability of failure). The probability P is over the random draw
of the training set which leads to ĥ.

This leads to the framework of Probably Approximately Correct (PAC) Learning,
introduced by Valiant in 1984. The goal is to find a hypothesis that is “approximately correct”
(L(h) is close to L(h∗)) with high ”probability” (1− δ).

1.8.1 The Realizable, Finite Hypothesis Class Case

Let’s analyze a simplified setting with two key assumptions:

1. Finite Hypothesis Class: The set of all possible hypotheses H is finite, i.e., |H| < ∞.

2. Realizability: There exists a perfect hypothesis h∗ ∈ H such that its true risk is zero.
Formally, L(h∗) = E[ℓ(z, h∗)] = 0.

Theorem 1.1 (PAC Bound for the Realizable Case). If the loss function is the 0-1 loss,
ℓ((x, y), h) = 1{h(x) ̸= y}, and the assumptions of a finite hypothesis class and realizability
hold, then for any ε, δ > 0, the true risk of the empirical risk minimizer ĥ is bounded:

L(ĥ) ≤ ε

with probability at least 1− δ, provided the number of training samples n satisfies:

n ≥ 1

ε

(
ln |H|+ ln

1

δ

)
Proof of Theorem 1.1. Our goal is to bound the probability of the ”bad event” where the hy-
pothesis we learn, ĥ, has a high true risk (L(ĥ) > ε).

Let B = {h ∈ H | L(h) > ε} be the set of ”bad” hypotheses. If our learned hypothesis ĥ is
in B, it means we have failed.

Under the realizability assumption, we know there exists an h∗ ∈ H with L(h∗) = 0. This
implies that the empirical risk of this perfect hypothesis is also zero, L̂(h∗) = 0(Prove this!!).
Since ĥ is the empirical risk minimizer, its training error must be at least as good (i.e., as low)
as any other hypothesis, so L̂(ĥ) ≤ L̂(h∗) = 0. This means L̂(ĥ) = 0.

If the bad event occurs (L(ĥ) > ε), it means that ĥ is a member of B and it has an empirical
risk of 0. Therefore, the event {L(ĥ) > ε} is a subset of the event that some bad hypothesis in
B has an empirical risk of 0. We can write this as:

P[L(ĥ) > ε] ≤ P[∃h ∈ B s.t. L̂(h) = 0]
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We can now bound the right-hand side using the union bound and properties of probabilities:

P[∃h ∈ B s.t. L̂(h) = 0] ≤
∑
h∈B

P[L̂(h) = 0] (Union Bound)

=
∑
h∈B

P[∀i = 1, . . . , n : ℓ((xi, yi), h) = 0] (Def. of L̂(h))

=
∑
h∈B

n∏
i=1

P[ℓ((xi, yi), h) = 0] (Samples are i.i.d.)

=
∑
h∈B

(1− L(h))n (Since L(h) = P[ℓ(z, h) = 1])

≤
∑
h∈B

(1− ε)n (For h ∈ B, L(h) > ε)

≤
∑
h∈B

e−εn (Since 1− x ≤ e−x)

= |B|e−εn

≤ |H|e−εn (Since B ⊆ H)

So, we have shown that the probability of failure is bounded: P[L(ĥ) > ε] ≤ |H|e−εn. We want
this probability to be at most δ. So we set the bound to be less than or equal to δ:

|H|e−εn ≤ δ

Solving this for n gives us the condition required by the theorem:

e−εn ≤ δ

|H|

−εn ≤ ln

(
δ

|H|

)
εn ≥ − ln

(
δ

|H|

)
= ln

(
|H|
δ

)
= ln |H|+ ln

1

δ

n ≥ 1

ε

(
ln |H|+ ln

1

δ

)
Thus, if n meets this condition, the probability that L(ĥ) > ε is at most δ. This is equivalent
to saying that the probability that L(ĥ) ≤ ε is at least 1− δ.

1.9 Beyond the Realizable Case: Generalization and Capacity

1.9.1 Uniform Convergence

The proof for the finite, realizable case used union bound over the entire hypothesis class. The
property that allows the empirical risk L̂(h) to be a good proxy for the true risk L(h) for all
hypotheses simultaneously is called uniform convergence. It is a property of a hypothesis
class that allows us to draw a finite number of samples n and ensure that for any underlying
distribution P ∗, the empirical risk is close to the true risk, i.e.,

sup
h∈H

∣∣L̂(h)− L(h)
∣∣ ≤ ε

, for all h ∈ H.
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1.9.2 Agnostic PAC Learning and Infinite Hypothesis Classes

A key question arises: Are only finite hypothesis classes with a realizable targetPAC-learnable,
or in other words admit uniform convergence. The answer is no, and we can generalize our
framework in two main ways:

1. Agnostic PAC Learning: We drop the realizability assumption. We no longer assume
that there exists a perfect hypothesis h∗ with L(h∗) = 0. This setting is more realistic, as
data is often noisy. This is typically handled using more general concentration inequalities
(like Hoeffding’s inequality) that bound the deviation |L(h)− L̂(h)|.

2. Infinite Hypothesis Classes: We drop the assumption that |H| is finite. This is essen-
tial for many practical models like linear classifiers or neural networks, as weights normally
belong to an infinite space. To handle this, we need ways to measure the ”size” or ”ca-
pacity” of the hypothesis class that don’t rely on simply counting its members. Common
measures include the VC-dimension and Rademacher complexity to determine the
capacity of the models.

1.9.3 The Fundamental Theorem of Statistical Learning

To handle infinite hypothesis classes, the Vapnik-Chervonenkis (VC) dimension is a key concept.
It measures the maximum number of points that can be ”shattered” (perfectly classified with
all possible combination of labels) by the hypothesis class. The Fundamental Theorem connects
the VC-dimension to PAC learnability.

Theorem 1.2 (Fundamental Theorem of Statistical Learning, simplified). Let H be a hypothesis
class of functions from a domain X to {0, 1} and let the loss function be the 0-1 loss. Assume
that the VC-dimension of H, denoted VCdim(H), is finite, with VCdim(H) = d. Then there
exist absolute constants C1, C2 > 0 such that the sample complexity for PAC learning is bounded
by:

C1
d+ ln(1/δ)

ε2
≤ n(ε, δ) ≤ C2

d+ ln(1/δ)

ε2

Note on VC-dimensions for common models:

• For linear classifiers in Rd, the VC-dimension is d+ 1.

• For Neural Networks with sign activation functions, E edges (weights), the VC-dimension
is O(|E| log |E|).

• For Neural Networks with sigmoid activation, N neurons and E edges, the VC-dimension
can be as high as O(N2|E|2).

1.10 The Bias-Variance Tradeoff

When choosing a hypothesis class H, we face a fundamental tradeoff. A more ”complex”
or ”high-capacity” class can fit more complex patterns but there may be a risk of overfit-
ting(probability of finding a classifier which performs well on training data, but is actually a
bad classifier) the training data. The excess risk can be decomposed into two parts: approxi-
mation error (bias) and estimation error (variance).

L(ĥ) =
(
L(ĥ)− L(h∗)

)
︸ ︷︷ ︸

Estimation Error (Variance)

+ (L(h∗))︸ ︷︷ ︸
Approximation Error (Bias)

Here, ĥ is the empirical risk minimiser hypothesis within our chosen class H, and h∗ is the best
hypothesis possible for our hypothesis class.
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• Estimation Error (Variance): This term measures how much the learned function ĥ
varies with different training sets. A high-capacity class H has high variance because ĥ
can change drastically to fit the noise in each specific sample. On an average, this error
is large when the capacity of H is large.

• Approximation Error (Bias): This term measures how less can be the true risk for the
best function in our class, H. If our class H is too simple (low capacity), it might not even
contain a good approximation of the true function, resulting in a high bias. This error
is large when the capacity of H is small, and the training problem is complex. Smaller
hypothesis class doesn’t necessarily mean high approximation error, but in general that
is true.

1.11 Finding the ERM solution in practice

Key Question: How do we find the ERM solution ĥ in practice?

1.11.1 Thorny question of optimization

Feldman et al. (2012) showed that finding the empirical risk minimizer ĥ is NP–hard for the
0–1 loss even for linear classifiers. In particular, for

H =
{
sign(⟨w, x⟩) | w ∈ Rd

}
,

define

fw(xi) =

{
−1, ⟨w, xi⟩ < 0,

+1, ⟨w, xi⟩ > 0,
ℓ0-1

(
(xi, yi), w

)
= 1{yi⟨w, xi⟩ < 0}.

1.11.2 Surrogate losses

To make optimization tractable we replace ℓ0-1 by convex surrogates. The main idea behind
using surrogate loss, is that we should chose those losses in which lowering down of surogate
losses also leads to the lowering down of zero-one loss, and thus, the empirical risk minimizer
using the surrogate loss would be the closest we can go to the true risk minimiser(zero-one
loss true minimiser). Hinge loss and cross-entropy loss are some of the loss functions used as
surrogates.

1.11.3 Error Decomposition

If H is learnable under the surrogate loss ℓS , then there exists ε ≥ 0 such that

LS(ĥ) ≤ LS(h
∗
S) + ε.

Since LS(h
∗
S) ≤ LS(h

∗) and ℓ0-1(z, h) ≤ ℓS(z, h) pointwise, we get

L(ĥ) = E
[
ℓ0-1(z, ĥ)

]
≤ LS(ĥ) ≤ LS(h

∗
s) + ε.

Adding and subtracting L(h∗) yields the three-term bound:

L(ĥ) ≤ L(h∗)︸ ︷︷ ︸
irreducible approximation error

+
(
LS(h

∗)− L(h∗)
)︸ ︷︷ ︸

optimization error

+ ε︸︷︷︸
estimation error

.
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1.11.4 Consistency / Calibration

Ideally one would like a calibration bound of the form∣∣L(ĥ)− L(h∗)
∣∣ ≤ LS(ĥ)− LS(h

∗
s),

but establishing this requires more refined analysis (see Bartlett, Jordan & McAuliffe, 2006).
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