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Motivation

3



Images

Sound

Malware

Machine Learning  
Systems

SVMs, Neural Networks, 
Random Forests,…

4

Cat
Dog

Malicious
Benign

“Open mail…”
“Who are you?”

The Ubiquity of Machine learningThe Ubiquity of Machine Learning



Critical Applications of ML
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Vulnerability of ML
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Classified as 0Classified as 5

Modified by adversary

Figure taken from ‘Explaining and harnessing adversarial examples’ by Goodfellow et. al.



Machine Learning, Briefly
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Typical ML Pipeline
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Trained ML Classifier
y = f(x)

Training phase

Training data

Training algorithm

1. Starts with      ,untrained classifierf0

Training Data Labels

2. Optimizes to find f ,  
which labels most data correctly

Test data

Test phase

 Predicted labels

Test Data Labels

Verify

To find 
misclassification 

percentage



Maximum margin separating hyperplane 
Image courtesy: Wikimedia Foundation

Support vectors

Support Vector Machines (SVMs) 
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Linear SVM on UCI Human Activity Recognition dataset  
Sitting vs. Walking 

Margin: Distance between parallel 
hyperplanes separating data 

Max. margin hyperplane: Halfway 
in between parallel hyperplanes



Adversaries and Attacks
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Adversarial setup
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During the test phase (or once deployed)…

Trained ML Classifier
y = f(x)

xadv yadv = f(xadv) yadv
?
= y

• Minimally modifies legitimate inputs to induce misclassification at 
test time 

Assume powerful adversary: has knowledge of trained classifier and 
input datasets 

Previous work has shown black-box ML systems can be reverse 
engineered enough to carry out evasion attacks using queries



Evasion Attack on Linear SVM
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x

Classified as 7

xadv Classified as 3!

Adversarial image with =2.0. 

Leads to 100% misclassification on test set.

✏

✏ controls the amount of perturbation added (typically small)

Original
Class

Adversarial
Class

xadv = x� ✏
wk

kwkk2
.

Attack on Linear SVMs

✏ 2 [0,1)



Not just Images…
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Random Forests,…
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Szegedy et. al. (2014),  
Papernot et. al. (2015)

Carlini et. al. (2016)

Xu et. al. (2016)

Cat

Dog

Malicious

Benign

“Open mail…”

“Who are you?”



Defenses
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• Maintain classification accuracy (utility) 

• Low efficiency overhead 

• Improve security, i.e. resistance to adversarial samples 

• Tunable, i.e. tradeoff utility, efficiency and security 

• Effective in a range of settings

Defense Desiderata
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Trained ML Classifier
y = f(x)

xadv

Add defense here… …and/or modify the classifier

ydef = y
ydef = fdef(xdef)



• Focused on specific classifier families 

• Resistance to adversary with knowledge of defense is 
unclear 

• Only valid for specific attacks 

Case in point 

• Proposed defense for neural networks of Papernot et. al. 
(2015) broken by modified attack in Carlini et. al. (2016) 

Limitations of Existing Defenses
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• Preprocessing step for high-dimensional 
data 

• Novel use as a defense against evasion 
attacks

Dimensionality reduction
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Various Algorithms tried…
• Principal Component Analysis (PCA) 

• Random Projections 

• Kernel PCA



Principal Component Analysis
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• Use Principal Component Analysis (PCA) to reduce dimension 

• Identifies top k directions of highest variance  

• Directions: eigenvectors of covariance matrix

⇥n

d

Data

n

k

Reduced Dimension 
Data

d

k

Principal 
Components

ui :

✓
1

n
XTX

◆
ui = �iui

Principal component



Step 1: Compute                         
, reconstructed input 

(Input may be benign or 
adversarial) 

Step 2: Find        , where          
is the original classifier

Intuition 

• Perturbation added in existing attacks has low variance 

• Reconstruction step removes perturbation

Reconstruction-based defense
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x̂ =
kX

i=1

hx,uiiui

f(x̂) f(·)

Initial adversarial 
example

After reconstruction



Intuition 

• For SVMs, margin increases for lower-dimensional classifiers

Re-training based defense
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Step 1: Train new classifier     on            (red. dim. training data) 

Step 2: Project all inputs to    dimensions 

Step 3: Use     to classify subsequent inputs

fk Xtrain
k

fk

k



Results
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Do the defenses work for 

1. different datasets? 

2. various ML classifiers? 

3. different attacks on the same classifier? 

4. dimensionality reduction algorithms other 
than PCA?

Validation of defenses

22



• MNIST: Handwritten digits from 0 to 9. Extensively studied 
from the attack perspective. Enables visual evaluation of 

defenses. 

• UCI HAR: Measurements obtained from a smartphone's 
accelerometer and gyroscope. Six activities: Walking, 

Walking Upstairs, Walking Downstairs, Sitting, Standing and 
Laying.

Datasets used
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Linear SVM: Re-training Defense for MNIST
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Reconstruction

92.33%

9.43%
✏ = 0

No defense



Linear SVM: Reconstruction Defense for HAR
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77.88%

28.74%



Classification accuracy
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HAR dataset MNIST dataset

Takeaway: Defenses work for two different 
datasets with minimal utility loss 

96.7%

91.6%

91.5%

91.2%



Neural Network: Reconstruction Defense for 
MNIST
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96.86%, 
Utility: 97.71%

33.77%, 
Utility: 96.43%

Re-training gives 7.17% misclassification at utility of 97.19%!



Ongoing Work and Extensions
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• What if the adversary is aware of the 
defenses? 

• For PCA defense, heuristically, adversary 
adds perturbation in directions with large 

projection along principal components

Strategic attacks
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• Ongoing evaluations suggest defenses are effective 
even for strategic adversary 



• Formal definitions of classifier security 

• Proofs for the effectiveness of dimensionality 
reduction  

• Optimal attacks against various defenses and 
classifiers

Extensions
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That’s all folks! 
Questions?
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Backup slides
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Evasion Attack on Neural Networks
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Classified as 5

Classified as 0!

Adversarial image with   =0.15 

Leads to 99% misclassification on test set.

✏

xadv = x+ ✏ sign(rJf (x, y, ✓))

✏ 2 [0, 1]

where          is the loss function 

of the neural network

Fast Sign Gradient attack

Jf (·)



 Neural Networks
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Hidden layers

...

Input layer

. . .. . .

p1

p2

p3
.
..

pC

Output softmax layer

Function that takes an input x and outputs a vector of probabilities y, 
giving the probability of each class



Machine Learning systems are ubiquitous 

BUT 

Vulnerable to adversarially modified inputs 

SO  

‘Good’ defenses are needed 

Motivation
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Dimensionality reduction as a defense against 
evasion attacks on machine learning classifiers

36

min

r
krk2

subject to f(x+ r) = l,

x+ r 2 [0, 1]d.

x

r

f

,where    is the input,  

 is the perturbation, and 

 is the neural network.

Classified as 8

Classified as 3



Linear SVM: Re-training Defense for MNIST
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Linear SVM: Reconstruction Defense for 
MNIST
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Reconstruction

92.33%

10.39%
✏ = 0

No defense



Linear SVM: Re-training defense for HAR
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